Investigating Dependence Structure Among Subsectors of Technology Stocks: A Vine Copula Approach

Authors

Keywords:

dependence structure, technology stock, sectoral market, stochastic model, vine copula

Abstract

The rising popularity of technology stocks, driven by their substantial returns, underscores the importance of comprehensively understanding the interdependencies among various technological subsectors. This research employs the vine copula model to analyze the complex interdependence among different segments of the technology industry. The results indicate that the C-vine model demonstrates superior effectiveness in capturing the dependence structures within the dataset, outperforming both the R-vine and D-vine structures. This superior performance is crucial for accurately mapping the intricate relationships that define the technology sector. Furthermore, through an exhaustive investigation of 25 specific technological subsectors, the study emphasizes the critical significance of smart grids, smart factories, robotics, and future payment systems. These findings highlight the pivotal role these subsectors play in the broader technology landscape. The enhanced understanding provided by the C-vine model offers valuable insights for investors and policymakers, aiding in the navigation of the rapidly evolving technological environment.

References

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198. https://doi.org/10.1016/j.insmatheco.2007.02.001

Aslam, F., Hunjra, A. I., Bouri, E., Mughal, K. S., & Khan, M. (2023). Dependence structure across equity sectors: Evidence from vine copulas. Borsa Istanbul Review, 23(1), 184–202. https://doi.org/10.1016/j.bir.2022.10.003

Bedford, T., & Cooke, R. M. (2002). Vines–a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031–1068. https://doi.org/10.1214/aos/1031689016

BenSaïda, A. (2023). The linkage between Bitcoin and foreign exchanges in developed and emerging markets. Financial Innovation, 9(1), 38. https://doi.org/10.1186/s40854-023-00454-w

BenSaïda, A., & Litimi, H. (2021). Financial contagion across G10 stock markets: A study during major crises. International Journal of Finance & Economics, 26(3), 4798–4821. https://doi.org/10.1002/ijfe.2041

Brechmann, E. C., & Schepsmeier, U. (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52(3), 1–27. https://doi.org/10.18637/jss.v052.i03

Čeryová, B., & Árendáš, P. (2024). Vine copula approach to the intra-sectoral dependence analysis in the technology industry. Finance Research Letters, 60, 104889. https://doi.org/10.1016/j.frl.2023.104889

Chang, K.-L. (2023). The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate. Journal of International Money and Finance, 133, 102839. https://doi.org/10.1016/j.jimonfin.2023.102839

Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis, 15(3), 347–363. https://doi.org/10.1093/pan/mpm004

Czado, C. (2019). Analyzing Dependent Data with Vine Copulas. Lecture Notes in Statistics. https://api.semanticscholar.org/CorpusID:182653983

Czado, C., Brechmann, E. C., & Gruber, L. (2013). Selection of Vine Copulas. In P. Jaworski, F. Durante, & W. K. Härdle (Eds.), Copulae in Mathematical and Quantitative Finance (pp. 17–37). Springer. https://doi.org/10.1007/978-3-642-35407-6_2

Czado, C., & Nagler, T. (2022). Vine Copula Based Modeling. Annual Review of Statistics and Its Application, 9(Volume 9, 2022), 453–477. https://doi.org/10.1146/annurev-statistics-040220-101153

Dai, Y.-S., Dai, P.-F., & Zhou, W.-X. (2023). Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets. Journal of International Financial Markets, Institutions and Money, 88, 101820. https://doi.org/10.1016/j.intfin.2023.101820

Dalu Zhang, M. Y., & Tsopanakis, A. (2018). Financial stress relationships among Euro area countries: An R-vine copula approach. The European Journal of Finance, 24(17), 1587–1608. https://doi.org/10.1080/1351847X.2017.1419273

Dißmann, J., Brechmann, E. C., Czado, C., & Kurowicka, D. (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59, 52–69. https://doi.org/10.1016/j.csda.2012.08.010

Ejaz, R., Ashraf, S., Hassan, A., & Gupta, A. (2022). An empirical investigation of market risk, dependence structure, and portfolio management between green bonds and international financial markets. Journal of Cleaner Production, 365, 132666. https://doi.org/10.1016/j.jclepro.2022.132666

Emir Hidayat, S., Bamahriz, O., Hidayati, N., Sari, C. A., & Dewandaru, G. (2022). Value drivers of startup valuation from venture capital equity-based investing: A global analysis with a focus on technological factors. Borsa Istanbul Review, 22(4), 653–667. https://doi.org/10.1016/j.bir.2021.10.001

Ge, Y., Xia, Y., & Wang, T. (2024). Digital economy, data resources and enterprise green technology innovation: Evidence from A-listed Chinese Firms. Resources Policy, 92, 105035. https://doi.org/10.1016/j.resourpol.2024.105035

Ghaemi Asl, M., Adekoya, O. B., & Rashidi, M. M. (2023). Quantiles dependence and dynamic connectedness between distributed ledger technology and sectoral stocks: Enhancing the supply chain and investment decisions with digital platforms. Annals of Operations Research, 327(1), 435–464. https://doi.org/10.1007/s10479-022-04882-2

Hernandez, J. A., Hammoudeh, S., Nguyen, D. K., Janabi, M. A. M. A., & Reboredo, J. C. (2017). Global financial crisis and dependence risk analysis of sector portfolios: A vine copula approach. Applied Economics. https://www.tandfonline.com/doi/abs/10.1080/00036846.2016.1240346

Hossain, A. T., Masum, A.-A., & Xu, J. (2023). COVID-19, a blessing in disguise for the Tech sector: Evidence from stock price crash risk. Research in International Business and Finance, 65, 101938. https://doi.org/10.1016/j.ribaf.2023.101938

Jain, P., & Maitra, D. (2023). Risk implications of dependence in the commodities: A copula-based analysis. Global Finance Journal, 57, 100859. https://doi.org/10.1016/j.gfj.2023.100859

Jia Wang, Y. C., Xinzhu Yan, & Wang, X. (2024). Multi-scale dependence and risk contagion among international financial markets based on VMD-Vine copula-CoVaR. Applied Economics, 0(0), 1–20. https://doi.org/10.1080/00036846.2024.2305615

Jiang, C., Li, Y., Xu, Q., & Liu, Y. (2021). Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model. International Review of Economics & Finance, 75, 386–398. https://doi.org/10.1016/j.iref.2021.04.024

Jose Arreola Hernandez, M. A. M. A. J., Shawkat Hammoudeh, Duc Khuong Nguyen, & Reboredo, J. C. (2017). Global financial crisis and dependence risk analysis of sector portfolios: A vine copula approach. Applied Economics, 49(25), 2409–2427. https://doi.org/10.1080/00036846.2016.1240346

Kwok, S., Omran, M., & Yu, P. (Eds.). (2024). Harnessing Technology for Knowledge Transfer in Accountancy, Auditing, and Finance (p. 279). IGI Global. https://doi.org/10.4018/979-8-3693-1331-2

Mehta, K., Sharma, R., & Yu, P. (Eds.). (2023). Revolutionizing Financial Services and Markets Through FinTech and Blockchain (p. 340). IGI Global. https://doi.org/10.4018/978-1-6684-8624-5

Nguyen, P. M., & Liu, W.-H. (2023). Portfolio management using time-varying vine copula: An application on the G7 equity market indices. The European Journal of Finance, 29(11), 1303–1329. https://doi.org/10.1080/1351847X.2022.2124119

Rašiová, B., & Árendáš, P. (2023). Copula approach to market volatility and technology stocks dependence. Finance Research Letters, 52, 103553. https://doi.org/10.1016/j.frl.2022.103553

Sahamkhadam, M., & Stephan, A. (2023). Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises. Journal of Forecasting, 42(8), 2139–2166. https://doi.org/10.1002/for.3009

Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review. Journal of Multivariate Analysis, 138, 34–52. https://doi.org/10.1016/j.jmva.2015.01.001

Schepsmeier, U. (2019). A goodness-of-fit test for regular vine copula models. Econometric Reviews, 38(1), 25–46. https://doi.org/10.1080/07474938.2016.1222231

Sharma, R., Mehta, K., Gupta, R., & Yu, P. (2024). Startups Valuation in a Rapidly Evolving Entrepreneurial Landscape: A Systematic Review. In R. Sharma, K. Mehta, & P. Yu (Eds.), Fostering Innovation in Venture Capital and Startup Ecosystems (pp. 39–63). IGI Global. https://doi.org/10.4018/979-8-3693-1326-8.ch003

Shrestha, K., Naysary, B., & Philip, S. S. S. (2023). Fintech market efficiency: A multifractal detrended fluctuation analysis. Finance Research Letters, 54, 103775. https://doi.org/10.1016/j.frl.2023.103775

Sklar, M. J. (1959). Fonctions de repartition a n dimensions et leurs marges. https://api.semanticscholar.org/CorpusID:127105744

Stover, O., Nath, P., Karve, P., Mahadevan, S., & Baroud, H. (2024). Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables. Applied Energy, 357, 122438. https://doi.org/10.1016/j.apenergy.2023.122438

Sukcharoen, K., & Leatham, D. J. (2017). Hedging downside risk of oil refineries: A vine copula approach. Energy Economics, 66, 493–507. https://doi.org/10.1016/j.eneco.2017.07.012

Torrado, N. (2021). On allocation policies in systems with dependence structure and random selection of components. Journal of Computational and Applied Mathematics, 388, 113274. https://doi.org/10.1016/j.cam.2020.113274

Vuong, Q. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica, 57, 307–333. https://doi.org/10.2307/1912557

Xiao, Q., Yan, M., & Zhang, D. (2023). Commodity market financialization, herding and signals: An asymmetric GARCH R-vine copula approach. International Review of Financial Analysis, 89, 102743. https://doi.org/10.1016/j.irfa.2023.102743

Xu, H., Chen, J., Lin, H., & Yu, P. (2024). Unraveling Financial Interconnections: A Methodical Investigation into the Application of Copula Theory in Modeling Asset Dependence. European Academic Journal - II, 1(1). https://eaj.ebujournals.lu/index.php/EAJ_II/article/view/86

Yaqoob, T., & Maqsood, A. (2024). The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources. Resources Policy, 89, 104666. https://doi.org/10.1016/j.resourpol.2024.104666

Yu, P., Xu, H., & Chen, J. (2024a). Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management, 17(5). https://doi.org/10.3390/jrfm17050197

Yu, P., Xu, H., & Chen, J. (2024b). Double Asymmetric Impacts, Dynamic Correlations, and Risk Management Amidst Market Risks: A Comparative Study between the US and China. Journal of Risk and Financial Management, 17(3), 99. https://doi.org/10.3390/jrfm17030099

Zhang, B., Wei, Y., Yu, J., Lai, X., & Peng, Z. (2014). Forecasting VaR and ES of stock index portfolio: A Vine copula method. Physica A: Statistical Mechanics and Its Applications, 416, 112–124. https://doi.org/10.1016/j.physa.2014.08.043

Zhang, D. (2014). Vine copulas and applications to the European Union sovereign debt analysis. International Review of Financial Analysis, 36, 46–56. https://doi.org/10.1016/j.irfa.2014.02.011

Zhang, Z., Ding, L., Zhang, F., & Zhang, Z. (2015). Optimal Currency Composition for China’s Foreign Reserves: A Copula Approach. The World Economy, 38(12), 1947–1965. https://doi.org/10.1111/twec.12237

Zheng, Y., Luan, X., Lu, X., & Liu, J. (2023). A new view of risk contagion by decomposition of dependence structure: Empirical analysis of Sino-US stock markets. International Review of Financial Analysis, 90, 102920. https://doi.org/10.1016/j.irfa.2023.102920

Downloads

Published

2024-06-11

How to Cite

Xu, H., Chen, J., Lin, H., & Yu, P. (2024). Investigating Dependence Structure Among Subsectors of Technology Stocks: A Vine Copula Approach. European Academic Journal - II CHINA, 1(1). Retrieved from https://eaj.ebujournals.lu/index.php/EAJ_II/article/view/90

Issue

Section

Articles

Categories