Investigating Dependence Structure Among Subsectors of Technology Stocks: A Vine Copula Approach
Keywords:
dependence structure, technology stock, sectoral market, stochastic model, vine copulaAbstract
The rising popularity of technology stocks, driven by their substantial returns, underscores the importance of comprehensively understanding the interdependencies among various technological subsectors. This research employs the vine copula model to analyze the complex interdependence among different segments of the technology industry. The results indicate that the C-vine model demonstrates superior effectiveness in capturing the dependence structures within the dataset, outperforming both the R-vine and D-vine structures. This superior performance is crucial for accurately mapping the intricate relationships that define the technology sector. Furthermore, through an exhaustive investigation of 25 specific technological subsectors, the study emphasizes the critical significance of smart grids, smart factories, robotics, and future payment systems. These findings highlight the pivotal role these subsectors play in the broader technology landscape. The enhanced understanding provided by the C-vine model offers valuable insights for investors and policymakers, aiding in the navigation of the rapidly evolving technological environment.
References
Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198. https://doi.org/10.1016/j.insmatheco.2007.02.001
Aslam, F., Hunjra, A. I., Bouri, E., Mughal, K. S., & Khan, M. (2023). Dependence structure across equity sectors: Evidence from vine copulas. Borsa Istanbul Review, 23(1), 184–202. https://doi.org/10.1016/j.bir.2022.10.003
Bedford, T., & Cooke, R. M. (2002). Vines–a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031–1068. https://doi.org/10.1214/aos/1031689016
BenSaïda, A. (2023). The linkage between Bitcoin and foreign exchanges in developed and emerging markets. Financial Innovation, 9(1), 38. https://doi.org/10.1186/s40854-023-00454-w
BenSaïda, A., & Litimi, H. (2021). Financial contagion across G10 stock markets: A study during major crises. International Journal of Finance & Economics, 26(3), 4798–4821. https://doi.org/10.1002/ijfe.2041
Brechmann, E. C., & Schepsmeier, U. (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52(3), 1–27. https://doi.org/10.18637/jss.v052.i03
Čeryová, B., & Árendáš, P. (2024). Vine copula approach to the intra-sectoral dependence analysis in the technology industry. Finance Research Letters, 60, 104889. https://doi.org/10.1016/j.frl.2023.104889
Chang, K.-L. (2023). The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate. Journal of International Money and Finance, 133, 102839. https://doi.org/10.1016/j.jimonfin.2023.102839
Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis, 15(3), 347–363. https://doi.org/10.1093/pan/mpm004
Czado, C. (2019). Analyzing Dependent Data with Vine Copulas. Lecture Notes in Statistics. https://api.semanticscholar.org/CorpusID:182653983
Czado, C., Brechmann, E. C., & Gruber, L. (2013). Selection of Vine Copulas. In P. Jaworski, F. Durante, & W. K. Härdle (Eds.), Copulae in Mathematical and Quantitative Finance (pp. 17–37). Springer. https://doi.org/10.1007/978-3-642-35407-6_2
Czado, C., & Nagler, T. (2022). Vine Copula Based Modeling. Annual Review of Statistics and Its Application, 9(Volume 9, 2022), 453–477. https://doi.org/10.1146/annurev-statistics-040220-101153
Dai, Y.-S., Dai, P.-F., & Zhou, W.-X. (2023). Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets. Journal of International Financial Markets, Institutions and Money, 88, 101820. https://doi.org/10.1016/j.intfin.2023.101820
Dalu Zhang, M. Y., & Tsopanakis, A. (2018). Financial stress relationships among Euro area countries: An R-vine copula approach. The European Journal of Finance, 24(17), 1587–1608. https://doi.org/10.1080/1351847X.2017.1419273
Dißmann, J., Brechmann, E. C., Czado, C., & Kurowicka, D. (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59, 52–69. https://doi.org/10.1016/j.csda.2012.08.010
Ejaz, R., Ashraf, S., Hassan, A., & Gupta, A. (2022). An empirical investigation of market risk, dependence structure, and portfolio management between green bonds and international financial markets. Journal of Cleaner Production, 365, 132666. https://doi.org/10.1016/j.jclepro.2022.132666
Emir Hidayat, S., Bamahriz, O., Hidayati, N., Sari, C. A., & Dewandaru, G. (2022). Value drivers of startup valuation from venture capital equity-based investing: A global analysis with a focus on technological factors. Borsa Istanbul Review, 22(4), 653–667. https://doi.org/10.1016/j.bir.2021.10.001
Ge, Y., Xia, Y., & Wang, T. (2024). Digital economy, data resources and enterprise green technology innovation: Evidence from A-listed Chinese Firms. Resources Policy, 92, 105035. https://doi.org/10.1016/j.resourpol.2024.105035
Ghaemi Asl, M., Adekoya, O. B., & Rashidi, M. M. (2023). Quantiles dependence and dynamic connectedness between distributed ledger technology and sectoral stocks: Enhancing the supply chain and investment decisions with digital platforms. Annals of Operations Research, 327(1), 435–464. https://doi.org/10.1007/s10479-022-04882-2
Hernandez, J. A., Hammoudeh, S., Nguyen, D. K., Janabi, M. A. M. A., & Reboredo, J. C. (2017). Global financial crisis and dependence risk analysis of sector portfolios: A vine copula approach. Applied Economics. https://www.tandfonline.com/doi/abs/10.1080/00036846.2016.1240346
Hossain, A. T., Masum, A.-A., & Xu, J. (2023). COVID-19, a blessing in disguise for the Tech sector: Evidence from stock price crash risk. Research in International Business and Finance, 65, 101938. https://doi.org/10.1016/j.ribaf.2023.101938
Jain, P., & Maitra, D. (2023). Risk implications of dependence in the commodities: A copula-based analysis. Global Finance Journal, 57, 100859. https://doi.org/10.1016/j.gfj.2023.100859
Jia Wang, Y. C., Xinzhu Yan, & Wang, X. (2024). Multi-scale dependence and risk contagion among international financial markets based on VMD-Vine copula-CoVaR. Applied Economics, 0(0), 1–20. https://doi.org/10.1080/00036846.2024.2305615
Jiang, C., Li, Y., Xu, Q., & Liu, Y. (2021). Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model. International Review of Economics & Finance, 75, 386–398. https://doi.org/10.1016/j.iref.2021.04.024
Jose Arreola Hernandez, M. A. M. A. J., Shawkat Hammoudeh, Duc Khuong Nguyen, & Reboredo, J. C. (2017). Global financial crisis and dependence risk analysis of sector portfolios: A vine copula approach. Applied Economics, 49(25), 2409–2427. https://doi.org/10.1080/00036846.2016.1240346
Kwok, S., Omran, M., & Yu, P. (Eds.). (2024). Harnessing Technology for Knowledge Transfer in Accountancy, Auditing, and Finance (p. 279). IGI Global. https://doi.org/10.4018/979-8-3693-1331-2
Mehta, K., Sharma, R., & Yu, P. (Eds.). (2023). Revolutionizing Financial Services and Markets Through FinTech and Blockchain (p. 340). IGI Global. https://doi.org/10.4018/978-1-6684-8624-5
Nguyen, P. M., & Liu, W.-H. (2023). Portfolio management using time-varying vine copula: An application on the G7 equity market indices. The European Journal of Finance, 29(11), 1303–1329. https://doi.org/10.1080/1351847X.2022.2124119
Rašiová, B., & Árendáš, P. (2023). Copula approach to market volatility and technology stocks dependence. Finance Research Letters, 52, 103553. https://doi.org/10.1016/j.frl.2022.103553
Sahamkhadam, M., & Stephan, A. (2023). Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises. Journal of Forecasting, 42(8), 2139–2166. https://doi.org/10.1002/for.3009
Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review. Journal of Multivariate Analysis, 138, 34–52. https://doi.org/10.1016/j.jmva.2015.01.001
Schepsmeier, U. (2019). A goodness-of-fit test for regular vine copula models. Econometric Reviews, 38(1), 25–46. https://doi.org/10.1080/07474938.2016.1222231
Sharma, R., Mehta, K., Gupta, R., & Yu, P. (2024). Startups Valuation in a Rapidly Evolving Entrepreneurial Landscape: A Systematic Review. In R. Sharma, K. Mehta, & P. Yu (Eds.), Fostering Innovation in Venture Capital and Startup Ecosystems (pp. 39–63). IGI Global. https://doi.org/10.4018/979-8-3693-1326-8.ch003
Shrestha, K., Naysary, B., & Philip, S. S. S. (2023). Fintech market efficiency: A multifractal detrended fluctuation analysis. Finance Research Letters, 54, 103775. https://doi.org/10.1016/j.frl.2023.103775
Sklar, M. J. (1959). Fonctions de repartition a n dimensions et leurs marges. https://api.semanticscholar.org/CorpusID:127105744
Stover, O., Nath, P., Karve, P., Mahadevan, S., & Baroud, H. (2024). Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables. Applied Energy, 357, 122438. https://doi.org/10.1016/j.apenergy.2023.122438
Sukcharoen, K., & Leatham, D. J. (2017). Hedging downside risk of oil refineries: A vine copula approach. Energy Economics, 66, 493–507. https://doi.org/10.1016/j.eneco.2017.07.012
Torrado, N. (2021). On allocation policies in systems with dependence structure and random selection of components. Journal of Computational and Applied Mathematics, 388, 113274. https://doi.org/10.1016/j.cam.2020.113274
Vuong, Q. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica, 57, 307–333. https://doi.org/10.2307/1912557
Xiao, Q., Yan, M., & Zhang, D. (2023). Commodity market financialization, herding and signals: An asymmetric GARCH R-vine copula approach. International Review of Financial Analysis, 89, 102743. https://doi.org/10.1016/j.irfa.2023.102743
Xu, H., Chen, J., Lin, H., & Yu, P. (2024). Unraveling Financial Interconnections: A Methodical Investigation into the Application of Copula Theory in Modeling Asset Dependence. European Academic Journal - II, 1(1). https://eaj.ebujournals.lu/index.php/EAJ_II/article/view/86
Yaqoob, T., & Maqsood, A. (2024). The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources. Resources Policy, 89, 104666. https://doi.org/10.1016/j.resourpol.2024.104666
Yu, P., Xu, H., & Chen, J. (2024a). Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management, 17(5). https://doi.org/10.3390/jrfm17050197
Yu, P., Xu, H., & Chen, J. (2024b). Double Asymmetric Impacts, Dynamic Correlations, and Risk Management Amidst Market Risks: A Comparative Study between the US and China. Journal of Risk and Financial Management, 17(3), 99. https://doi.org/10.3390/jrfm17030099
Zhang, B., Wei, Y., Yu, J., Lai, X., & Peng, Z. (2014). Forecasting VaR and ES of stock index portfolio: A Vine copula method. Physica A: Statistical Mechanics and Its Applications, 416, 112–124. https://doi.org/10.1016/j.physa.2014.08.043
Zhang, D. (2014). Vine copulas and applications to the European Union sovereign debt analysis. International Review of Financial Analysis, 36, 46–56. https://doi.org/10.1016/j.irfa.2014.02.011
Zhang, Z., Ding, L., Zhang, F., & Zhang, Z. (2015). Optimal Currency Composition for China’s Foreign Reserves: A Copula Approach. The World Economy, 38(12), 1947–1965. https://doi.org/10.1111/twec.12237
Zheng, Y., Luan, X., Lu, X., & Liu, J. (2023). A new view of risk contagion by decomposition of dependence structure: Empirical analysis of Sino-US stock markets. International Review of Financial Analysis, 90, 102920. https://doi.org/10.1016/j.irfa.2023.102920