Evaluating the Predictive Power of the Energy-Related Uncertainty Index on Bitcoin Volatility

Authors

Keywords:

energy uncertainty, realized volatility, stochastic model, cryptocurrency market, risk management

Abstract

Uncertainty indices at low frequency have garnered increasing attention in financial research due to their significant impact on asset returns. This study delves into the emerging field of low-frequency uncertainty indices in financial research, focusing on the Energy-Related Uncertainty Index (EUI) and its implications for Bitcoin volatility modeling. Utilizing GARCH-MIDAS models, we compare Bitcoin's volatility under the influence of EUI against Bitcoin's realized volatility (RV), examining its predictive power across 28 countries. The results reveal two key findings: Firstly, integrating EUI into the GARCH-MIDAS model significantly enhances its capability to explain Bitcoin volatility, with the effectiveness differing across countries. EUI's impact on Bitcoin volatility is especially pronounced with approximately a one-year lag. Secondly, although there is no apparent leverage effect in Bitcoin returns, EUI exhibits an asymmetric influence on Bitcoin volatility, highlighting its essential role in volatility modeling. These findings hold significance for investors and policymakers, providing valuable insights to enhance risk management strategies in the volatile cryptocurrency markets.

References

Ahir, H., Bloom, N., & Furceri, D. (2022). The World Uncertainty Index (w29763; p. w29763). National Bureau of Economic Research. https://doi.org/10.3386/w29763

Amendola, A., Candila, V., & Gallo, G. M. (2019). On the asymmetric impact of macro–variables on volatility. Economic Modelling, 76, 135–152. https://doi.org/10.1016/j.econmod.2018.07.025

Amendola, A., Candila, V., & Gallo, G. M. (2020). Choosing Between Weekly and Monthly Volatility Drivers Within a Double Asymmetric GARCH-MIDAS Model. In M. La Rocca, B. Liseo, & L. Salmaso (Eds.), Nonparametric Statistics (pp. 25–34). Springer International Publishing.

Amendola, A., Candila, V., & Gallo, G. M. (2021). Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model. Econometrics and Statistics, 20, 12–28. https://doi.org/10.1016/j.ecosta.2020.11.001

Asgharian, H., Hou, A. J., & Javed, F. (2013). The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach. Journal of Forecasting, 32(7), 600–612. https://doi.org/10.1002/for.2256

Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1

Caldara, D., & Iacoviello, M. (2022). Measuring Geopolitical Risk. American Economic Review, 112(4), 1194–1225. https://doi.org/10.1257/aer.20191823

Cevik, E. I., Gunay, S., Zafar, M. W., Destek, M. A., Bugan, M. F., & Tuna, F. (2022). The impact of digital finance on the natural resource market: Evidence from DeFi, oil, and gold. Resources Policy, 79, 103081. https://doi.org/10.1016/j.resourpol.2022.103081

Ch’ien, L. T., Cannon, N. J., Charamella, L. J., Dismukes, W. E., Whitley, R. J., Buchanan, R. A., & Alford, C. A. (2004). Effect of adenine arabinoside on severe Herpesvirus hominis infections in man. 1973. The Journal of Infectious Diseases, 190(7), 1362–1367. https://doi.org/10.1093/infdis/190.7.1362

Corbet, S., Urquhart, A., & Yarovaya, L. (Eds.). (2020). Cryptocurrency and Blockchain Technology. De Gruyter. https://doi.org/10.1515/9783110660807

Cross, J., & Nguyen, B. H. (2018). Time varying macroeconomic effects of energy price shocks: A new measure for China. Energy Economics, 73, 146–160. https://doi.org/10.1016/j.eneco.2018.05.014

Dang, T. H.-N., Nguyen, C. P., Lee, G. S., Nguyen, B. Q., & Le, T. T. (2023a). Measuring the energy-related uncertainty index. Energy Economics, 124, 106817. https://doi.org/10.1016/j.eneco.2023.106817

Dang, T. H.-N., Nguyen, C. P., Lee, G. S., Nguyen, B. Q., & Le, T. T. (2023b). Measuring the energy-related uncertainty index. Energy Economics, 124, 106817. https://doi.org/10.1016/j.eneco.2023.106817

Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008

Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock Market Volatility and Macroeconomic Fundamentals. Review of Economics and Statistics, 95(3), 776–797. https://doi.org/10.1162/REST_a_00300

Fang, Y., Fan, Y., Haroon, M., & Dilanchiev, A. (2023). Exploring the relationship between global economic policy and volatility of crude futures: A two-factor GARCH-MIDAS analysis. Resources Policy, 85, 103766. https://doi.org/10.1016/j.resourpol.2023.103766

Ferdous, M. S., Chowdhury, M. J. M., & Hoque, M. A. (2021). A survey of consensus algorithms in public blockchain systems for crypto-currencies. Journal of Network and Computer Applications, 182, 103035. https://doi.org/10.1016/j.jnca.2021.103035

Ferretti, A., Judd, J. T., Taylor, P. R., Schatzkin, A., & Brown, C. (1989). Modulating influence of dietary lipid intake on the prostaglandin system in adult men. Lipids, 24(5), 419–422. https://doi.org/10.1007/BF02535149

Gavriilidis, K. (2021). Measuring Climate Policy Uncertainty. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3847388

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

Howell, A., Saber, T., & Bendechache, M. (2023). Measuring node decentralisation in blockchain peer to peer networks. Blockchain: Research and Applications, 4(1), 100109. https://doi.org/10.1016/j.bcra.2022.100109

Isah, K. O., Badmus, S. K., Ogunjemilua, O. D., Adelakun, J. O., & Yakubu, Y. (2024). Revisiting the predictive prowess of economic policy uncertainty (EPU) in stock market volatility: GEPU or NEPU? Scientific African, 23, e02068. https://doi.org/10.1016/j.sciaf.2024.e02068

Jia, L., Xu, R., Wu, J., Song, M., & Chen, X. (2023). Impacts of geopolitical risk and economic policy uncertainty on metal futures price volatility: Evidence from China. Resources Policy, 87, 104328. https://doi.org/10.1016/j.resourpol.2023.104328

Jin, D., & Yu, J. (2023a). Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty. Finance Research Letters, 58, 104520. https://doi.org/10.1016/j.frl.2023.104520

Jin, D., & Yu, J. (2023b). Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty. Finance Research Letters, 58, 104520. https://doi.org/10.1016/j.frl.2023.104520

Jin, S. V. (2024). “Technopian but lonely investors?”: Comparison between investors and non-investors of blockchain technologies, cryptocurrencies, and non-fungible tokens (NFTs) in Artificial Intelligence-Driven FinTech and decentralized finance (DeFi). Telematics and Informatics Reports, 14, 100128. https://doi.org/10.1016/j.teler.2024.100128

Kwok, S., Omran, M., & Yu, P. (Eds.). (2024). Harnessing Technology for Knowledge Transfer in Accountancy, Auditing, and Finance (p. 279). IGI Global. https://doi.org/10.4018/979-8-3693-1331-2

Lee, C.-C., Wang, C.-W., Thinh, B. T., & Xu, Z.-T. (2022). Climate risk and bank liquidity creation: International evidence. International Review of Financial Analysis, 82, 102198. https://doi.org/10.1016/j.irfa.2022.102198

Li, D., Zhang, L., & Li, L. (2023). Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model. International Review of Financial Analysis, 88, 102708. https://doi.org/10.1016/j.irfa.2023.102708

Mehta, K., Sharma, R., & Yu, P. (Eds.). (2023). Revolutionizing Financial Services and Markets Through FinTech and Blockchain (p. 340). IGI Global. https://doi.org/10.4018/978-1-6684-8624-5

Meiryani, M., Delvin Tandyopranoto, C., Emanuel, J., Lindawati, A. S. L., Fahlevi, M., Aljuaid, M., & Hasan, F. (2022). The effect of global price movements on the energy sector commodity on bitcoin price movement during the COVID-19 pandemic. Heliyon, 8(10), e10820. https://doi.org/10.1016/j.heliyon.2022.e10820

Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Economics, 87, 104703. https://doi.org/10.1016/j.eneco.2020.104703

Qin, M., Wu, T., Ma, X., Albu, L. L., & Umar, M. (2023). Are energy consumption and carbon emission caused by Bitcoin? A novel time-varying technique. Economic Analysis and Policy, 80, 109–120. https://doi.org/10.1016/j.eap.2023.08.004

Rani, P., Sharma, P., & Gupta, I. (2024). Toward a greener future: A survey on sustainable blockchain applications and impact. Journal of Environmental Management, 354, 120273. https://doi.org/10.1016/j.jenvman.2024.120273

Roudari, S., Sadeghi, A., Gholami, S., Mensi, W., & Al-Yahyaee, K. H. (2023). Dynamic spillovers among natural gas, liquid natural gas, trade policy uncertainty, and stock market. Resources Policy, 83, 103688. https://doi.org/10.1016/j.resourpol.2023.103688

Syuhada, K., Suprijanto, D., & Hakim, A. (2022). Comparing gold’s and Bitcoin’s safe-haven roles against energy commodities during the COVID-19 outbreak: A vine copula approach. Finance Research Letters, 46, 102471. https://doi.org/10.1016/j.frl.2021.102471

Wang, Q., Huang, Q., Wu, X., Tan, J., & Sun, P. (2023). Categorical uncertainty in policy and bitcoin volatility. Finance Research Letters, 58, 104664. https://doi.org/10.1016/j.frl.2023.104664

Wątorek, M., Drożdż, S., Kwapień, J., Minati, L., Oświęcimka, P., & Stanuszek, M. (2021). Multiscale characteristics of the emerging global cryptocurrency market. Physics Reports, 901, 1–82. https://doi.org/10.1016/j.physrep.2020.10.005

Xia, Y., Sang, C., He, L., & Wang, Z. (2023). The role of uncertainty index in forecasting volatility of Bitcoin: Fresh evidence from GARCH-MIDAS approach. Finance Research Letters, 52, 103391. https://doi.org/10.1016/j.frl.2022.103391

Xu, H., Chen, J., Lin, H., & Yu, P. (2024). Unraveling Financial Interconnections: A Methodical Investigation into the Application of Copula Theory in Modeling Asset Dependence. European Academic Journal - II, 1(1). https://eaj.ebujournals.lu/index.php/EAJ_II/article/view/86

Yamada, Y., Hara, K., Nakamura, S., Ueda, M., Ito, K., & Nagasaka, T. (2013). Minimally invasive approach with tissue engineering for severe alveolar bone atrophy case. International Journal of Oral and Maxillofacial Surgery, 42(2), 260–263. https://doi.org/10.1016/j.ijom.2012.07.003

Yu, P., Xu, H., & Chen, J. (2024a). Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management, 17(5). https://doi.org/10.3390/jrfm17050197

Yu, P., Xu, H., & Chen, J. (2024b). Double Asymmetric Impacts, Dynamic Correlations, and Risk Management Amidst Market Risks: A Comparative Study between the US and China. Journal of Risk and Financial Management, 17(3). https://doi.org/10.3390/jrfm17030099

Zribi, W., Boufateh, T., & Guesmi, K. (2023). Climate uncertainty effects on bitcoin ecological footprint through cryptocurrency environmental attention. Finance Research Letters, 58, 104584. https://doi.org/10.1016/j.frl.2023.104584

Downloads

Published

2024-06-07

How to Cite

Xu, H., Wang, Y., Chen, J., Lin, H., & Yu, P. (2024). Evaluating the Predictive Power of the Energy-Related Uncertainty Index on Bitcoin Volatility. European Academic Journal - II CHINA, 1(1). Retrieved from https://eaj.ebujournals.lu/index.php/EAJ_II/article/view/89

Issue

Section

Articles

Categories