Unraveling Financial Interconnections: A Methodical Investigation into the Application of Copula Theory in Modeling Asset Dependence
Keywords:
copula theory, stochastic model, dependence modeling, financial assets, method applicationAbstract
Copula theory, a branch of statistics and probability theory, focuses on characterizing and modeling the dependency structures between random variables. Within finance, copulas offer a versatile framework crucial for tasks like risk management, portfolio optimization, and derivative pricing. Despite its importance, applying copula theory in finance can be challenging due to its complexity and the unique features of financial time-series data. This method review explores the utilization of copula theory in modeling dependency among financial assets. It examines copula theory fundamentals, various modeling techniques, empirical applications in finance, future directions, and practical implementation. By synthesizing existing literature, this review aims to shed light on the strengths, limitations, and practical considerations of copula-based modeling within the finance domain.
References
Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198. https://doi.org/10.1016/j.insmatheco.2007.02.001
Almeida, J., & Gonçalves, T. C. (2023). A systematic literature review of investor behavior in the cryptocurrency markets. Journal of Behavioral and Experimental Finance, 37, 100785. https://doi.org/10.1016/j.jbef.2022.100785
Arbel, J., Crispino, M., & Girard, S. (2019). Dependence properties and Bayesian inference for asymmetric multivariate copulas. Journal of Multivariate Analysis, 174, 104530. https://doi.org/10.1016/j.jmva.2019.06.008
Bahraoui, T. (2023). Bernstein copula characteristic function. Communications in Statistics - Theory and Methods, 0(0), 1–14. https://doi.org/10.1080/03610926.2023.2247107
Bedford, T., & Cooke, R. M. (2002). Vines–a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031–1068. https://doi.org/10.1214/aos/1031689016
Bedford, T. J., & Cooke, R. (2001). Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis: ESREL 2003.
Bedoui, R., Benkraiem, R., Guesmi, K., & Kedidi, I. (2023). Portfolio optimization through hybrid deep learning and genetic algorithms vine Copula-GARCH-EVT-CVaR model. Technological Forecasting and Social Change, 197, 122887. https://doi.org/10.1016/j.techfore.2023.122887
Bevacqua, E. (2017). CDVineCopulaConditional: Sampling from Conditional C- and D-Vine Copulas. https://CRAN.R-project.org/package=CDVineCopulaConditional
Bevilacqua, M., Alvarado, E., & Caamaño-Carrillo, C. (2024). A flexible Clayton-like spatial copula with application to bounded support data. Journal of Multivariate Analysis, 201, 105277. https://doi.org/10.1016/j.jmva.2023.105277
Bianchi, P., Elgui, K., & Portier, F. (2023). Conditional independence testing via weighted partial copulas. Journal of Multivariate Analysis, 193, 105120. https://doi.org/10.1016/j.jmva.2022.105120
Bok, D. (2024). copulae: Python copulae library for dependency modelling (0.7.9) [Python; MacOS :: MacOS X, Microsoft :: Windows, POSIX].
Brechmann, E. C., & Czado, C. (2013). Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling, 30(4), 307–342. https://doi.org/doi:10.1524/strm.2013.2002
Cerqueti, R., Giacalone, M., & Panarello, D. (2019). A Generalized Error Distribution Copula-based method for portfolios risk assessment. Physica A: Statistical Mechanics and Its Applications, 524, 687–695. https://doi.org/10.1016/j.physa.2019.04.077
Chen, T., Wong, Y. D., Shi, X., & Yang, Y. (2021). A data-driven feature learning approach based on Copula-Bayesian Network and its application in comparative investigation on risky lane-changing and car-following maneuvers. Accident Analysis & Prevention, 154, 106061. https://doi.org/10.1016/j.aap.2021.106061
Chen, X., Wang, B., Xiao, Z., & Yi, Y. (2024). Improved estimation of semiparametric dynamic copula models with filtered nonstationarity. Journal of Econometrics, 105739. https://doi.org/10.1016/j.jeconom.2024.105739
Cheng, G., Zhou, L., Chen, X., & Huang, J. Z. (2014). Efficient estimation of semiparametric copula models for bivariate survival data. Journal of Multivariate Analysis, 123, 330–344. https://doi.org/10.1016/j.jmva.2013.10.008
Claassen, J. (2024). VineCopulas (0.2.5) [Python; OS Independent]. https://github.com/IVM-VU/VineCopulas
Coblenz, M. (2021). MATVines: A vine copula package for MATLAB. SoftwareX, 14, 100700. https://doi.org/10.1016/j.softx.2021.100700
Cossette, H., Gadoury, S.-P., Marceau, E., & Robert, C. Y. (2019). Composite likelihood estimation method for hierarchical Archimedean copulas defined with multivariate compound distributions. Journal of Multivariate Analysis, 172, 59–83. https://doi.org/10.1016/j.jmva.2019.03.008
Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized Autoregressive Score Models with Applications. Journal of Applied Econometrics, 28(5), 777–795. https://doi.org/10.1002/jae.1279
Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer, 222.
Czado, C., Brechmann, E. C., & Gruber, L. (2013). Selection of Vine Copulas. In P. Jaworski, F. Durante, & W. K. Härdle (Eds.), Copulae in Mathematical and Quantitative Finance (pp. 17–37). Springer Berlin Heidelberg.
DataCebo. (2024). copulas: Create tabular synthetic data using copulas-based modeling. (0.11.0) [Python]. https://pypi.org/project/copulas/
Djaloud, T. S., & Seck, C. T. (2024). Nonparametric kernel estimation of conditional copula density. Statistics & Probability Letters, 110154. https://doi.org/10.1016/j.spl.2024.110154
Eck, N. J. van, & Waltman, L. (2011). Text mining and visualization using VOSviewer. CoRR, abs/1109.2058. http://arxiv.org/abs/1109.2058
Hafner, C. M., & Manner, H. (2012). Dynamic stochastic copula models: Estimation, inference and applications. Journal of Applied Econometrics, 27(2), 269–295. https://doi.org/10.1002/jae.1197
Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge University Press. https://doi.org/10.1017/CBO9781139540933
He, F., Yarahmadi, A., & Soleymani, F. (2024). Investigation of multivariate pairs trading under copula approach with mixture distribution. Applied Mathematics and Computation, 472, 128635. https://doi.org/10.1016/j.amc.2024.128635
Hernández-Maldonado, V. M., Erdely, A., Díaz-Viera, M., & Rios, L. (2024). Fast procedure to compute empirical and Bernstein copulas. Applied Mathematics and Computation, 477, 128827. https://doi.org/10.1016/j.amc.2024.128827
Ho, A. T. Y., Huynh, K. P., & Jacho-Chávez, D. T. (2019). Using nonparametric copulas to measure crude oil price co-movements. Energy Economics, 82, 211–223. https://doi.org/10.1016/j.eneco.2018.05.022
Hofert, M., Kojadinovic, I., Maechler, M., & Yan, J. (2023). copula: Multivariate Dependence with Copulas. https://CRAN.R-project.org/package=copula
Huang, Y., Guo, K., Yi, X., Yu, J., Shen, Z., & Li, T. (2022). T-copula and Wasserstein distance-based stochastic neighbor embedding. Knowledge-Based Systems, 243, 108431. https://doi.org/10.1016/j.knosys.2022.108431
Jagtap, H. P., Bewoor, A. K., Kumar, R., Ahmadi, M. H., & Chen, L. (2020). Performance analysis and availability optimization to improve maintenance schedule for the turbo-generator subsystem of a thermal power plant using particle swarm optimization. Reliability Engineering & System Safety, 204, 107130. https://doi.org/10.1016/j.ress.2020.107130
Joe, H. (1996). Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence Parameters. Lecture Notes-Monograph Series, 28, 120–141.
Joe, H. (2014). Dependence Modeling with Copulas. Chapman and Hall/CRC. https://doi.org/10.1201/b17116
Jumelle, M. (2018). pycopula: Python copulas library for dependency modeling (0.1.5) [Computer software]. https://github.com/MaximeJumelle/pycopula/
Karimi, P., Mirzaee Ghazani, M., & Ebrahimi, S. B. (2023). Analyzing spillover effects of selected cryptocurrencies on gold and brent crude oil under COVID-19 pandemic: Evidence from GJR-GARCH and EVT copula methods. Resources Policy, 85, 103887. https://doi.org/10.1016/j.resourpol.2023.103887
Kesgin, H. T., & Amasyali, M. F. (2024). Advancing NLP models with strategic text augmentation: A comprehensive study of augmentation methods and curriculum strategies. Natural Language Processing Journal, 7, 100071. https://doi.org/10.1016/j.nlp.2024.100071
Koopman, S. J., Lucas, A., & Scharth, M. (2016). Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models. The Review of Economics and Statistics, 98(1), 97–110. https://doi.org/10.1162/REST_a_00533
Kurz, M. (2015). VineCopulaMatlab [Computer software]. https://maltekurz.github.io/VineCopulaMatlab/
Kwok, S., Omran, M., & Yu, P. (Eds.). (2024). Harnessing Technology for Knowledge Transfer in Accountancy, Auditing, and Finance (p. 279). IGI Global. https://doi.org/10.4018/979-8-3693-1331-2
Lee, H.-T., & Lee, C.-C. (2022). A regime-switching real-time copula GARCH model for optimal futures hedging. International Review of Financial Analysis, 84, 102395. https://doi.org/10.1016/j.irfa.2022.102395
Lu, M., & Xu, X. (2024). TRNN: An efficient time-series recurrent neural network for stock price prediction. Information Sciences, 657, 119951. https://doi.org/10.1016/j.ins.2023.119951
Luan, Y., Ye, S., Li, Y., Jia, L., & Yue, X.-G. (2022). Revisiting natural resources volatility via TGARCH and EGARCH. Resources Policy, 78, 102896. https://doi.org/10.1016/j.resourpol.2022.102896
Ly, S., Sriboonchitta, S., Tang, J., & Wong, W.-K. (2022). Exploring dependence structures among European electricity markets: Static and dynamic copula-GARCH and dynamic state-space approaches. Energy Reports, 8, 3827–3846. https://doi.org/10.1016/j.egyr.2022.02.308
Mehta, K., Sharma, R., & Yu, P. (Eds.). (2023). Revolutionizing Financial Services and Markets Through FinTech and Blockchain (p. 340). IGI Global. https://doi.org/10.4018/978-1-6684-8624-5
Migliavacca, M., Patel, R., Paltrinieri, A., & Goodell, J. W. (2022). Mapping impact investing: A bibliometric analysis. Journal of International Financial Markets, Institutions and Money, 81, 101679. https://doi.org/10.1016/j.intfin.2022.101679
Nagler, T. (2017a). kdevine: Multivariate Kernel Density Estimation with Vine Copulas. https://CRAN.R-project.org/package=kdevine
Nagler, T. (2017b). vinereg: D-Vine Quantile Regression. https://CRAN.R-project.org/package=vinereg
Nagler, T., Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., & Erhardt, T. (2023). VineCopula: Statistical Inference of Vine Copulas. https://CRAN.R-project.org/package=VineCopula
Nagler, T., & Vatter, T. (2023). rvinecopulib: High Performance Algorithms for Vine Copula Modeling. https://CRAN.R-project.org/package=rvinecopulib
Nelsen, R. B. (2006). An Introduction to Copulas. Springer. https://doi.org/10.1007/0-387-28678-0
Nelsen, R. B., Quesada-Molina, J. J., Rodrı́guez-Lallena, J. A., & Úbeda-Flores, M. (2001). Distribution functions of copulas: A class of bivariate probability integral transforms. Statistics & Probability Letters, 54(3), 277–282. https://doi.org/10.1016/S0167-7152(01)00060-8
Neumeyer, N., Omelka, M., & Hudecová, Š. (2019). A copula approach for dependence modeling in multivariate nonparametric time series. Journal of Multivariate Analysis, 171, 139–162. https://doi.org/10.1016/j.jmva.2018.11.016
Nguyen, H., Ausín, M. C., & Galeano, P. (2019). Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas. Journal of Financial Econometrics, 17(1), 118–151. https://doi.org/10.1093/jjfinec/nby032
Nicolas, M. (2024). pycop: Copula for multivariate dependence modeling (0.0.13) [Computer software]. https://github.com/maximenc/pycop/
Patton, A. J. (2006). Modelling Asymmetric Exchange Rate Dependence. International Economic Review, 47(2), 527–556. https://doi.org/10.1111/j.1468-2354.2006.00387.x
Rašiová, B., & Árendáš, P. (2023). Copula approach to market volatility and technology stocks dependence. Finance Research Letters, 52, 103553. https://doi.org/10.1016/j.frl.2022.103553
Scheffer, M., & Weiß, G. N. F. (2017). Smooth nonparametric Bernstein vine copulas. Quantitative Finance, 17(1), 139–156. https://doi.org/10.1080/14697688.2016.1185141
Schellhase, C. (2017a). pencopulaCond: Estimating Non-Simplified Vine Copulas Using Penalized Splines. https://CRAN.R-project.org/package=pencopulaCond
Schellhase, C. (2017b). penRvine: Flexible R-Vines Estimation Using Bivariate Penalized Splines. https://CRAN.R-project.org/package=penRvine
Segnon, M., Gupta, R., & Wilfling, B. (2024). Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks. International Journal of Forecasting, 40(1), 29–43. https://doi.org/10.1016/j.ijforecast.2022.11.007
Shome, S., Hassan, M. K., Verma, S., & Panigrahi, T. R. (2023). Impact investment for sustainable development: A bibliometric analysis. International Review of Economics & Finance, 84, 770–800. https://doi.org/10.1016/j.iref.2022.12.001
Sklar, M. J. (1959). Fonctions de repartition a n dimensions et leurs marges. https://api.semanticscholar.org/CorpusID:127105744
Tian, Y., Yao, H., & Li, Z. (2020). Plant-wide process monitoring by using weighted copula–correlation based multiblock principal component analysis approach and online-horizon Bayesian method. ISA Transactions, 96, 24–36. https://doi.org/10.1016/j.isatra.2019.06.002
Tomer, S. K. (2022). copulalib: A library for the copula (2.0.1) [Python; OS Independent]. https://github.com/tomersk/copulalib
Vatter, T. (2024). pyvinecopulib: A python interface to vinecopulib (0.6.5) [C++, Python]. https://github.com/vinecopulib/pyvinecopulib/
Vatter, T., & Nagler, T. (2017). GamCopula: Generalized Additive Models for Bivariate Conditional Dependence Structures and Vine Copulas. https://CRAN.R-project.org/package=gamCopula
Wang, J., Niu, X., Zhang, L., Liu, Z., & Wei, D. (2022). The influence of international oil prices on the exchange rates of oil exporting countries: Based on the hybrid copula function. Resources Policy, 77, 102734. https://doi.org/10.1016/j.resourpol.2022.102734
Wei, Z., Conlon, E. M., & Wang, T. (2021). Asymmetric dependence in the stochastic frontier model using skew normal copula. International Journal of Approximate Reasoning, 128, 56–68. https://doi.org/10.1016/j.ijar.2020.10.011
Xiao, Q., Yan, M., & Zhang, D. (2023). Commodity market financialization, herding and signals: An asymmetric GARCH R-vine copula approach. International Review of Financial Analysis, 89, 102743. https://doi.org/10.1016/j.irfa.2023.102743
Yao, C.-Z., & Li, M.-J. (2023). GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets. The North American Journal of Economics and Finance, 66, 101910. https://doi.org/10.1016/j.najef.2023.101910
Yu, P., Xu, H., & Chen, J. (2024a). Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management, 17(5). https://doi.org/10.3390/jrfm17050197
Yu, P., Xu, H., & Chen, J. (2024b). Double Asymmetric Impacts, Dynamic Correlations, and Risk Management Amidst Market Risks: A Comparative Study between the US and China. Journal of Risk and Financial Management, 17(3), 99. https://doi.org/10.3390/jrfm17030099
Zhao, X., Bai, M., Yang, X., Liu, J., Yu, D., & Chang, J. (2021). Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation. Energy, 234, 121306. https://doi.org/10.1016/j.energy.2021.121306