Journal of International DBA Studies (JIDS) Vol. 1 No. 002 (2025) https://eaj.ebujournals.lu/index.php/JIDS/index

AI-Augmented Learning Pathways: Ethical and Organizational Implications for **Engineering Professionals in Singapore**

by Albert Lee K H^*

Abstract

How is Al-augmented learning reshaping professional pathways for engineers in Singapore, a nation advancing its Smart Nation agenda? This article takes a conceptual approach in responding to this question, drawing on organizational learning, identity theory and AI ethics to frame AI as more than a technical tool. Findings highlight three key dynamics. First, AI is reshaping professional learning and knowledge acquisition. Second, ethical tensions emerge around accountability, bias and human oversight. Third, engineers are moving into hybrid technomanagerial roles that require digital fluency and identity adaptation. Organizational responses such as capability building, ethical governance and targeted upskilling are central to managing these transitions. The implications extend to policy, education and practice. It concludes with a conceptual framework for Al-augmented learning which underscores the need for ethical literacy, professional adaptability and inclusive workforce strategies.

Keywords: artificial intelligence (AI); engineering practice; role hybridity; professional identity; learning pathways; organizational adaptation; ethics of AI; digital fluency

Albert Lee K H is a Certified Senior Practicing Management Consultant with over 30 years of professional experience across the Asia-Pacific region, including senior leadership roles in German multinational corporations. He lectures in Beacon International College, where he teaches Global Business Management – a program awarded by Cardiff Metropolitan University, UK.

Introduction

Navigating a Shifting Landscape

Artificial intelligence (AI) is redefining the field of engineering by reshaping expertise, learning and ethical responsibility. No longer confined to technical efficiency, AI increasingly functions as a cognitive and organizational agent, influencing how engineers acquire knowledge, make decisions and perform their roles (Daugherty & Wilson, 2018; Luckin, 2018). This reconfiguration extends beyond automation to the restructuring of professional identity and learning trajectories.

Singapore's Smart Nation vision and strong digital infrastructure provide a distinct context in which these changes unfold (IMDA, 2023). Here, AI adoption intersects with broader organizational and societal goals, positioning engineers as key actors in hybrid techno-managerial roles. This introduction sets the stage for analyzing the interplay between technological innovation, professional identity and learning in engineering practice.

The Rise of AI in Engineering Practice

The integration of AI in engineering marks a major change in the production of knowledge, support for decision-making and development of professional competencies. While engineering has traditionally depended on codified standards and technical expertise, AI capabilities ranging from machine learning to natural language processing are redefining the scope of professional practice (Bessen, 2019; Daugherty & Wilson, 2018).

Engineers now collaborate with AI systems not only to automate routine tasks but also augment higher-order judgment including simulation modelling, predictive maintenance and real-time project coordination (Shrestha et al., 2019). These advancements create new learning pathways while raising vital questions about adaptation, identity and the extent of human control in AI-mediated environments.

Research Gap: Learning, Ethics and Role Reconfiguration

Although the promise of AI is widely emphasized, less attention has been given to its micro-level effects on how engineers learn, form professional identities and exercise ethical judgment. Few conceptual accounts explain how AI-augmented learning influences both the content and process of knowledge acquisition (Luckin, 2018). As engineering roles increasingly combine technical expertise with digital fluency, they face challenges in redefining their identities and adapting to hybrid functions (Ibarra, 1999; Nagy & Koles, 2021).

Ethical tensions linked to algorithmic rigidity, accountability gaps and bias have been well documented (Floridi & Cowls, 2019). However, little is known about how such dilemmas are encountered within engineers' everyday learning pathways and decision practices. This gap is particularly significant as engineers balance their professional autonomy with reliance on Al outputs.

From an organizational perspective, research has yet to fully address how organizations are enabling or failing to enable engineers to navigate these changes effectively. Questions remain on whether organizations provide adequate structures for capability development, ethical governance and support for identity transitions in Al mediated contexts (Leonardi, 2020).

Objectives and Contribution to Innovation and Digital Society

This article addresses the above gaps by offering a conceptual exploration of Alaugmented learning pathways among engineering professionals in Singapore. Specifically, it aims to:

- 1. Theorize how AI is altering professional learning and cognition in engineering work
- 2. Examine ethical tensions in human-AI collaboration with a focus on decision support and accountability.
- 3. Investigate how AI integration is reshaping engineering identity and professional roles.
- 4. Analyze organizational responses in preparing engineers for digitally mediated work environments.

The Singapore context offers a particularly compelling case due to its Smart Nation goal, advanced digital infrastructure and policy emphasis on upskilling and innovation (IMDA, 2023). As a global node for engineering excellence and technological adoption, Singapore enables a distinctive analysis of the sociotechnical entanglements between AI systems, human learners and institutional structures. This article contributes to the discourse on innovation and digital society by proposing a conceptual framework for AI-augmented learning and offering multi-level insights relevant to educators, organizational leaders, policymakers and researchers.

The remainder of the article is organized thematically. It first develops the conceptual foundations, drawing on literature from AI as a learning technology, organizational learning, identity theory and AI ethics. This is followed by a discussion of real -world illustrations of AI-augmented learning in engineering practice with a focus on Singapore's infrastructure and industrial sectors. The article then explores the ethical tensions and organizational responsibilities that emerge in AI-human collaboration and considers how professional identity is being reshaped particularly through role hybridity and techno-managerial transitions. Organizational responses are examined next, highlighting capability development, digital fluency and governance practices. The article concludes with a synthesis of key findings, practical recommendations and suggested avenues for future research.

Conceptual Foundations

Learning, Identity, and Ethics

This article synthesizes key theoretical perspectives to frame Al-augmented learning in engineering contexts. Drawing from organizational learning, professional identity and Al ethics, it outlines how engineers engage with new knowledge systems, navigate role redefinitions and contend with emerging ethical responsibilities in Almediated environments.

Al as Cognitive Companion: From Automation to Augmentation

The shift from automation to augmentation marks a significant transformation in how AI is conceptualized in professional environments. Rather than replacing engineers, contemporary discourse frames AI as a cognitive companion - an intelligent system that supports reasoning, prediction and problem-solving in tandem with human agents (Daugherty & Wilson, 2018). In engineering domains, this includes AI-enabled tools for structural optimization, real-time sensor analytics, generative design and project risk assessment (Kaplan & Haenlein, 2019). Such tools facilitate not just task execution but a form of "learning while doing" where the AI system dynamically adapts to user input thereby shaping the user's cognitive processes (Luckin, 2018). This co-evolution of human and machine intelligence presents new opportunities for embedded situated learning (Suchman, 2007). However, this raises questions about knowledge externalization and over-reliance on algorithmic systems (Glikson & Woolley, 2020).

Learning-in-Practice: Digital Fluency and Organizational Learning

Al-augmented learning challenges traditional notions of professional development which often separate formal education from experiential practice. Drawing on the lens of situated learning (Lave & Wenger, 1991) and organizational learning theory (Argyris & Schön, 1978), engineers increasingly acquire skills in digital environments where learning is inseparable from the tools and contexts in which work occurs. This requires what Chuang and Graham (2018) call digital fluency - the ability to engage with digital tools, data and AI systems to support task performance and decision-making. In organizations, digital fluency is not merely a technical competency but a cultural expectation, embedded in workflows, decision structures and value systems (Leonardi, 2020). Learning in such environments is often informal, iterative and socially mediated thereby creating both opportunities for adaptability and risks of uneven learning outcomes across individuals and teams (Ellinger & Cseh, 2007).

Theoretical Convergence - Towards an Integrative Model

As AI technologies become increasingly embedded in engineering workflows, they challenge not only how professionals perform tasks but also how they learn and ethically engage with their environments. The preceding sections have outlined three foundational domains: AI-supported cognition and learning, professional identity development and ethical AI mediation - each grounded in distinct bodies of literature. This section draws these strands together to propose an integrative conceptual framework to understanding how engineers re-contextualize their professional identity and learning in AI-mediated environments.

Synthesizing Learning, Identity, and Ethics

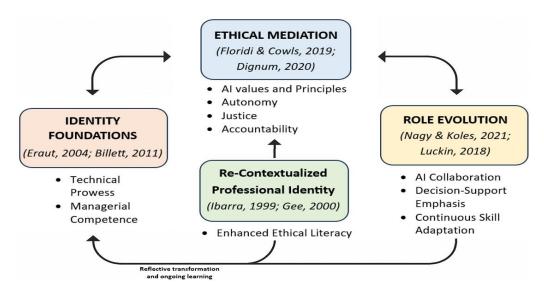
Cognitive science highlights how AI tools increasingly function as "cognitive delegates" enabling professionals to offload repetitive or complex information-processing tasks (Luckin, 2018; Holmes et al., 2019). In parallel, organizational learning literature foregrounds the importance of situated practice-based engagement within real-world contexts (Lave & Wenger, 1991; Billett, 2011). Simultaneously, identity theory emphasizes how engineers form and revise professional identities particularly when transitioning into hybrid, interdisciplinary or ethically ambiguous roles (Ibarra, 1999; Gee, 2000).

Ethical AI scholarship complements these perspectives by emphasizing the need for value-sensitive design, transparency and accountability in human-AI collaboration (Floridi & Cowls, 2019; Dignum, 2020). Taken together, these domains reveal that AI is not merely a technical tool but a mediating agent in learning, role negotiation and moral reasoning.

Conceptual Model: Re-Contextualizing Engineering Professionalism

Figure 1 presents the conceptual model "Re-Contextualizing Engineering Professionalism in an AI-Integrated Environment" which integrates the strands of learning, identity, and ethics into a cyclical process. The model begins with foundational competencies such as technical expertise and managerial capability which serve as the basis for professional practice (Eraut, 2004; Billett, 2011).

Figure 1Re-Contextualizing Engineering Professionalism in an AI-Integrated Environment



Note: This conceptual model was developed by the author to integrate identity theory, ethical reasoning and organizational learning models

As AI becomes embedded in engineering workflows, these foundations are mediated by ethical considerations including autonomy, accountability and fairness (Floridi & Cowls, 2019; Dignum, 2020). This stage highlights the importance of value-sensitive engagement as engineers negotiate the implications of algorithmic decision-making in safety, responsibility and public trust.

The cycle progresses into evolving professional roles where engineers collaborate with AI systems in tasks such as decision support, predictive modelling and interdisciplinary coordination (Nagy & Koles, 2021; Luckin, 2018). Through this process, engineers develop hybrid identities that combine technical, managerial and ethical capacities.

The model culminates in a re-contextualized professional identity that is ethically literate and digitally adaptive. Importantly, this renewed identity reinforces future skill foundations, reflecting an iterative process aligned with experiential learning (Kolb, 1984) and re-contextualization theory (Evans et al., 2011).

Operationalizing the Model: Pedagogical Logics

To operationalize the conceptual model, Figure 2 introduces five pedagogical logics that inform how Al-augmented learning can be structured, evaluated and applied in engineering education. These logics are: Cognitive Delegation, Situated Learning, Identity Formation and Hybridity, Ethical Framing and Reflective Re-contextualization. Together, they provide a scaffold for integrating both technical competence and ethical judgment into professional learning.

Figure 2
Pedagogical Logics of Al-Augmented Learning in Engineering Practice

Pedagogical Logic	Refined Description	Examples	Supporting Literature
Cognitive Delegation	Al systems take over routine analysis and decision-support tasks, freeing learners to concentrate on problem-solving and higher-level reasoning.	Using AI tools like ChatGPT or Copilot to scaffold technical report writing in engineering courses.	Luckin (2018); Holmes et al. (2019); Selwyn (2019)
Situated Learning	Learning is embedded within authentic, Al-enabled environments that mirror the demands and complexities of real workplaces.	Simulating fault diagnosis with Al-powered digital twins in smart building systems.	Lave & Wenger (1991); Billett (2011); Eraut (2004)
Identity Formation and Hybridity	Learners explore and negotiate evolving professional identities shaped by hybrid roles in Al- mediated practice.	Students role-play as "Al ethics consultants" in capstone design projects.	
Ethical Framing	Al-supported learning is coupled with structured ethical reflection, encouraging consideration of fairness, accountability, and professional responsibility.	Debates on algorithmic bias and fairness embedded in project-based learning assessments.	Floridi & Cowls (2019); Dignum (2020); Gressee et al. (2019)
Reflective Recontextualisation	Learners critically reinterpret and apply knowledge across Al and non-Al settings, enabling transfer of insight and innovation.	Reflective journals comparing pre-Al vs. Al-assisted project decisions over time.	Evans et al. (2011); Kolb (1984); Illeris (2007)

Note: This table was designed by the author to operationalize Figure 1 into instructional strategy dimensions.

Each logic builds on established scholarship while being contextualized through applied examples. Cognitive Delegation highlights how AI systems can assume repetitive or complex cognitive tasks thereby enabling engineers to focus on higher-order reasoning (Luckin, 2018). Situated Learning draws attention to the embedding of knowledge within authentic, practice-based contexts (Lave & Wenger, 1991). Identity Formation and Hybridity reflect the growing need for professionals to negotiate hybrid technical-managerial roles (Ibarra, 1999; Nagy & Koles, 2021). Ethical Framing underscores the importance of value-driven engagement with AI, particularly regarding

accountability and fairness (Floridi & Cowls, 2019). Finally, Reflective Recontextualization emphasizes iterative cycles of adapting and reinterpreting professional knowledge (Evans et al., 2011). By combining these logics, the framework provides a multidimensional perspective on how AI technologies reshape engineering education and practice, reinforcing both adaptability and ethical resilience.

Ethical AI: Decision-Making, Responsibility, and Trust

The ethical dimension of AI integration in engineering cannot be overstated. AI systems, particularly those that operate through machine learning and probabilistic reasoning often lack transparency and traceability posing significant challenges for accountability (Floridi & Cowls, 2019). Engineers interacting with AI tools in safety-critical domains must confront dilemmas about when to trust an algorithm, who is responsible for decisions and how to explain outcomes to stakeholders. Ethical frameworks such as principlism (Beauchamp & Childress, 2001) and responsible innovation (Stilgoe, Owen, & Macnaghten, 2013) articulate core values – such as beneficence, justice, autonomy but are often difficult to operationalize in real-time decision-making contexts. In Almediated learning, the moral dimension becomes embedded in the learning process itself: how engineers interpret data, act upon recommendations and balance efficiency with accountability. Organizational ethics policies and AI governance frameworks are thus not peripheral but central to cultivating ethical learning ecosystems (Winfield & Jirotka, 2018).

Al-Augmented Learning in Engineering Contexts

This section examines how AI is reshaping learning pathways in engineering, not merely by automating tasks but by enabling new modes of knowledge acquisition, reflection and decision-making. It explores AI role as a learning partner, highlighting emerging practices and cognitive shifts in digitally mediated work environments.

Case-Inspired Scenarios in Singapore's Engineering Sector

In Singapore, the integration of AI into the engineering landscape reflects the country's broader Smart Nation agenda and Industry 4.0 ambitions. Infrastructure projects such as the Deep Tunnel Sewerage System (DTSS) and the North-South Corridor Expressway exemplify how AI is being deployed to manage complex systems, predict outcomes and support adaptive planning. AI-powered Building Information Modelling (BIM) platforms such as Autodesk Revit integrated with machine learning algorithms enable real time simulations and generative design thereby enhancing both technical accuracy and cross-disciplinary collaboration (Building and Construction Authority [BCA], 2022). In these settings, engineers are exposed to embedded learning environments where iterative feedback from AI systems becomes part of the professional knowledge construction process (Schwartz et al., 2020).

At the organizational level, companies such as Surbana Jurong and ST Engineering have adopted Al-driven platforms for predictive maintenance and smart facilities management. These platforms monitor sensor data, detect anomalies and provide decision support recommendations requiring engineers to not only interpret outputs but also understand the limitations and assumptions embedded in algorithmic models (Ghosh et al., 2021). Consequently, the learning process becomes less about

acquiring static knowledge and more about developing meta-cognitive skills such as systems thinking, critical interpretation and ethical reasoning in the face of uncertainty.

Cognitive Offloading, Just-in-Time Learning, and Simulated Practice

Al-augmented learning in engineering settings increasingly reflects three pedagogical logics: cognitive offloading, just-in-time learning, and simulated practice. Cognitive offloading occurs when engineers rely on Al systems to handle routine calculations, detect risks or visualize scenarios thereby freeing cognitive resources for higher-order problem solving (Glikson & Woolley, 2020). This reallocation of attention allows professionals to shift focus from data processing to integrative decision-making.

Just-in-time learning refers to knowledge acquisition that is context-dependent, need-driven and technologically mediated. In the field, wearable AR/VR devices and mobile apps such as Smart Helmet by Defence Science and Technology Agency (DSTA) provide instant access to instructional content, troubleshooting tips or real-time hazard alerts thus collapsing the boundary between learning and doing (Zhang et al., 2022).

Simulated practice is supported through digital twins and Al-powered virtual environments by allowing engineers to rehearse project scenarios, run failure simulations or explore design alternatives in a risk-free space (Kaplan & Haenlein, 2019). These environments support iterative experiential learning and facilitate deeper reflection on consequences and alternatives which are key components in developing professional judgment (Kolb, 1984).

Adaptive Systems and Human-Centered Design

A key feature of Al-augmented learning environments is their adaptability. Intelligent tutoring systems and adaptive decision-support platforms tailor content and prompts based on user behavior, error patterns or project needs (Luckin, 2018). In engineering contexts, this means that a junior engineer may receive granular procedural feedback while a senior engineer may be challenged with complex trade-off evaluations. For example, Al-assisted structural analysis tools such as SkyCiv or SAP2000 integrate historical data and user analytics to recommend optimized configurations while allowing for user override and annotation thus preserving the engineer's interpretive control and professional discretion within system-guided learning.

Importantly, human-centered design principles are gaining prominence in shaping these AI systems. Instead of designing purely for efficiency, emerging platforms aim to support explainability, user trust and learning alignment (Winfield & Jirotka, 2018). In Singapore, government-linked institutions such as A*STAR and BCA Academy have begun embedding AI ethics modules into their continuing education programs highlighting the growing recognition that technical excellence must be accompanied by ethical awareness and contextual judgment.

Ethical and Organizational Tensions

This section investigates the ethical dilemmas and organizational frictions emerging from AI integration in engineering. It addresses challenges related to transparency, accountability and trust, while examining how institutions balance

innovation with responsible governance in shaping AI-mediated professional environments.

Human Judgment vs Machine Autonomy: Navigating Trust and Control

As AI systems gain autonomy within engineering workflows, fundamental questions emerge around control, oversight and responsibility. Unlike traditional tools that follow deterministic rules, AI operates probabilistically, adapting to data inputs and environmental conditions. This creates what Gunkel (2012) refer to as moral accountability dilemma: when machine outputs carry real-world consequences, assigning responsibility becomes contested. In practice, this tension is visible when AI systems recommend design alterations, trigger safety warnings or forecast maintenance risks; scenarios where engineers must decide whether to accept, validate or override algorithmic insights (Glikson & Woolley, 2020).

The fluid boundary between human judgment and algorithmic influence also complicates trust. Engineers may hesitate to rely on AI due to uncertainty or conversely, place excessive confidence in it through automation bias (Parasuraman & Riley, 1997). Calibrating this trust is therefore a critical competency. In Singapore, where workplace cultures prioritize efficiency, accountability and regulatory scrutiny. Such dilemmas become particularly acute in state-linked infrastructure projects with significant public safety implications (Tan & Koh, 2020). These dynamics underscore the need for both technical literacy and ethical reflexivity as engineers navigate the balance between human discretion and machine autonomy in high-stakes contexts.

Accountability, Bias, and Explainability

A central ethical challenge in AI integration is the opacity of decision-making. Many advanced systems particularly those relying on deep learning or ensemble models operate as "black boxes" producing outputs without clear explanations of how conclusions were reached (Burrell, 2016). In safety-critical engineering contexts, this lack of transparency undermines accountability and raises difficult questions about liability. For example, if a structural fault is later traced to an AI-generated recommendation, reconstructing the decision chain becomes complex especially in the absence of agreed standards for explainability and auditing (Raji et al., 2020).

Bias compounds these challenges. Al systems trained on incomplete or skewed data can embed systemic inequities into design outcomes and operational practices (O'Neil, 2016). In diverse societies such as Singapore, such biases may carry sociotechnical implications. For example, when urban planning algorithms inadvertently favor certain demographic patterns. Addressing these risks requires more than technical competence. Engineers must develop critical data awareness to interrogate datasets, identify assumptions and assess algorithmic fairness throughout system design, deployment and review. Cultivating these skills ensures that professional responsibility and public trust are not eroded by opaque or biased Al systems.

Engineering Ethics vs. Algorithmic Governance

A further challenge emerges at the intersection of established engineering ethics

and the newer domain of algorithmic governance. Traditional engineering codes such as those endorsed by the Institution of Engineers Singapore (IES) and the National Society of Professional Engineers (NSPE), prioritize principles of public safety, integrity, competence and transparency (IES, 2023; NSPE, 2023). In contrast, Al governance frameworks emphasize values like data protection, traceability, fairness and interpretability; standards not yet fully integrated into conventional professional guidelines (Mittelstadt et al., 2016).

This misalignment creates both practical and pedagogical tensions. In Singapore, agencies such as IMDA and GovTech have issued AI ethics frameworks (IMDA, 2023). However, these often remain high-level policy statements rather than actionable practices. Engineers are therefore caught between pressures to maximise efficiency through AI and the obligation to uphold public trust through human oversight.

Some organizations have responded by embedding ethical reflection exercises and AI-focused training into professional development, though such efforts remain uneven and fragmented (Winfield & Jirotka, 2018). Developing a shared ethical language across engineers, AI developers and organizational leaders is becoming increasingly urgent to reconcile these frameworks and guide responsible AI adoption in engineering practice.

The Professional Engineer in Flux

This section considers how engineers' professional identity is shifting as Al becomes embedded in their work. Traditional boundaries of expertise are being redefined, with professionals navigating new expectations and hybrid functions. These changes require continuous negotiation of legitimacy as engineers balance established technical authority with emerging responsibilities linked to digital fluency, ethical judgment and cross disciplinary collaboration.

From Technical Specialist to Tech-Mediator

The infusion of AI into engineering practice is catalyzing a redefinition of professional identity as engineers are increasingly expected to move beyond the confines of technical specialization and into roles that require cross-functional, digital and ethical competencies. Traditionally, engineers have been positioned as domain experts focused on physical systems design, modelling and analysis. However, the integration of AI introduces the need for engineers to also interpret algorithmic outputs, translate insights across disciplinary boundaries and mediate between machine intelligence and human values (Nagy & Koles, 2021).

This evolution is evident in emerging roles such as Al-enhanced systems engineers, data-literate infrastructure analysts and machine-human interface designers. For example, engineers at the Land Transport Authority (LTA) in Singapore now use Al-driven traffic modelling tools to anticipate congestion and optimize infrastructure planning. These professionals must explain Al-generated forecasts to policymakers, engage the public in consultation and ensure that algorithmic outputs align with transport equity principles (Goh, 2022).

Such hybrid roles align with what Kegan (1994) describes as "evolutionary truce-breaking" a developmental shift where professionals must reconstruct not only what they know but who they are in relation to emerging technologies, organizational demands and public accountability. The professional engineer is no longer an isolated technocrat but a boundary-spanner negotiating technological, ethical and sociocultural domains.

Negotiating Professional Identity and Role Hybridity

Shifting into hybrid roles compels engineers to renegotiate their professional identities, a process that can be both cognitively demanding and emotionally challenging. Building on Ibarra's (1999) notion of provisional selves, engineers often experiment with new behaviors and practices before these become part of their stable identity. This process is intensified in Al-mediated settings, where professionals must engage with unfamiliar concepts such as probabilistic modelling or algorithmic bias mitigation (Gee, 2000; Matusov, 2020).

In Singapore, for example, engineers working on smart building projects at organizations like CapitaLand or Keppel Land increasingly collaborate with software developers and data scientists. This collaboration transforms them from consumers of digital outputs into interpreters and curators of algorithmic insights. Yet, when organizational support and training are insufficient; engineers may experience identity dissonance, leading to feelings of being underprepared or undervalued (Tan & Koh, 2020).

Generational and cultural dynamics add further complexity. Senior engineers accustomed to deterministic methods often find it difficult to adjust to probabilistic reasoning. On the other hand, younger professionals may adopt hybrid roles more easily but lack authority to influence institutional practices (Schön, 1983). Consequently, identity transitions unfold unevenly, shaped by leadership expectations, workplace culture and digital maturity.

Implications for Learning Pathways and Career Development

The fluidity of engineering roles under AI transformation calls for rethinking professional learning pathways. Traditional models of continuing professional development tend to emphasize individual certification, compliance and static knowledge transfer. Yet the emerging reality necessitates dynamic, experiential and socio-cognitive learning models in which engineers co-learn with machines, peers and organizations (Fuller & Unwin, 2004).

In response, organizations such as Surbana Jurong and WSP Singapore have begun to pilot AI capability academies by offering interdisciplinary workshops on data ethics, systems modelling and algorithmic explainability. These programs blend formal instruction with project-based mentorship encouraging engineers to develop a sense of mastery and belonging in hybridized roles. The emphasis is on transformative learning where professionals critically reflect on underlying assumptions and reframe their worldviews (Mezirow, 2000).

Professional institutions like the Institution of Engineers Singapore (IES) are increasingly integrating AI ethics and digital fluency modules into licensure and CPD

schemes. This signals a broader recognition that career progression in engineering will depend not just on technical mastery but on adaptive identity reconstruction, ethical judgment and cross-domain collaboration.

Organizational Responses and Capability Building

This section examines how organizations are responding to AI integration through workforce development, ethical infrastructure and capability-building strategies. It explores how learning cultures, training interventions and digital transformation policies are shaping engineers' readiness for hybrid roles in AI-enabled environments.

What Are Organizations Asking of Engineers?

As engineering roles evolve into hybrid functions requiring fluency in AI tools ethical reasoning and cross-functional collaboration, organizational expectations are shifting accordingly. Engineers are no longer assessed solely on technical competence but increasingly on their ability to interpret data, communicate across silos and cocreate solutions with intelligent systems. This mirrors broader shifts in workforce development frameworks that call for "T-shaped" professionals; those who combine deep expertise with the ability to collaborate across domains (Brown et al., 2011).

In Singapore, organizations such as Arup Singapore, Surbana Jurong and WSP now explicitly state digital proficiency, Al literacy and ethical awareness as preferred or required attributes in job descriptions for mid- and senior-level engineers (SkillsFuture Singapore, 2023). Furthermore, government-linked entities like HDB and PUB have started embedding Al components in infrastructure planning requiring in-house engineers to work with data scientists and algorithm developers to co-interpret and validate outputs. These evolving job roles call for organizations to rethink their approaches to training, recruitment, performance evaluation and workplace learning culture (Ellinger & Cseh, 2007).

Fostering Digital Fluency and Ethical AI Awareness

To address these capability demands, leading engineering firms are developing inhouse digital capability academies and participating in public-private upskilling initiatives. For example, Surbana Jurong's Digital Management Office (DMO) launched its AI capability programme in 2022 by offering staff training modules in Python for engineering, BIMintegrated analytics and responsible AI governance. Similarly, Singapore Power (SP Group) has implemented an internal AI Bootcamp focused on smart grid operations, predictive maintenance and explainable AI frameworks for energy engineers.

Public sector bodies are playing a catalytic role. The SkillsFuture Work-Study Programme for engineering professionals developed in collaboration with local polytechnics embeds AI-centric modules such as sensor-based automation, ethics in smart systems and human-centered design (SkillsFuture Singapore, 2023). This reflects an ecosystem-wide push to integrate digital fluency defined as the capacity to use digital tools critically, ethically and adaptively (Chuang & Graham, 2018) into the learning pathways of current and future engineers.

From a policy perspective, the Infocomm Media Development Authority's (IMDA) Model AI Governance Framework encourages firms to adopt responsible AI practices through risk assessments, human-in-the-loop protocols and transparency audits (IMDA, 2023). Some multinational engineering consultancies have responded by establishing AI Ethics Review Boards often chaired by senior engineers and legal advisors to vet high impact AI applications before deployment. These efforts reflect a growing recognition that digital capability and ethical discernment must go hand-in-hand.

Frameworks for Al Integration in Learning Ecosystems

Organizational learning frameworks are evolving to align with the dynamics of Almediated environments. Many institutions are transitioning from conventional continuing professional development (CPD) models toward blended, experiential and iterative learning architectures that reflect the agile, data-rich nature of Al-integrated work (Fuller & Unwin, 2004; De Laat & Schreurs, 2013). These innovations can be categorized as follows:

- Simulated learning labs where engineers experiment with AI-powered tools such as digital twins allowing for low-risk prototyping, modelling and scenario planning (van der Meijden & Visscher, 2023). These labs provide high-fidelity simulations that support active learning and technical reflection.
- Cross-functional project teams that integrate engineers, data scientists and UX
 designers into collaborative AI co-creation spaces. These configurations foster
 interdisciplinary competence and mutual learning which are increasingly vital in
 adaptive engineering ecosystems (Markauskaite & Goodyear, 2017).
- Reflection cycles, grounded in Kolb's experiential learning theory (1984), are embedded within agile sprints and digital development cycles. These structured reflection stages enhance both individual and team sensemaking, especially when AI outputs are ambiguous or ethically consequential (Moon, 2013; Kolb & Kolb, 2017).

A practical example is the Digital Capability Roadmap implemented by Keppel Infrastructure in Singapore (Keppel & NUS, 2023). This roadmap outlines digital maturity levels and learning trajectories tailored to engineering roles. It incorporates role-based competency matrices and progressive ethical checkpoints to ensure engineers assess AI outputs not only for technical validity but also for explainability, fairness and stakeholder accountability, criteria aligned with frameworks like AI4People and the IEEE Ethically Aligned Design guidelines (Floridi & Cowls, 2019; IEEE, 2020).

However, structural constraints persist. Small and medium-sized enterprises (SMEs) often lack the financial and organizational slack to deploy such robust learning infrastructures (Cedefop, 2020). Moreover, legacy work cultures that privilege speed over reflection may obstruct the uptake of these reflective learning models (Billett, 2001). Addressing these issues necessitates multi-level collaboration across policymakers, industry leaders, universities and professional bodies to co-develop sectoral learning ecosystems (Lee & Clarke, 2019).

Conclusion and Future Directions

This article synthesizes the article's key insights on AI-augmented learning, identity transformation and ethical adaptation in engineering. It highlights implications for policy, organizational strategy, professional development and proposes future research directions to support more inclusive, context-sensitive and ethically grounded AI integration.

Summary of Key Arguments and Contributions

This article has examined how Al-augmented learning is reshaping the professional identity, learning pathways, and ethical responsibilities of engineers within Singapore's technologically ambitious ecosystem. By integrating conceptual frameworks from organizational learning, identity theory and Al ethics, we have argued that Al is not merely a technical tool but a cognitive partner that co-constructs professional knowledge and reshapes how engineers exercise judgment and responsibility in decision-making (Daugherty & Wilson, 2018; Glikson & Woolley, 2020).

The transformation of engineers into hybrid professionals what we termed techno-mediators requires new skill sets in data interpretation, ethical reasoning and digital collaboration (Ibarra, 1999; Nagy & Koles, 2021). At the organizational level, organizations are responding with capability-building interventions such as digital academies, simulated learning environments and cross-functional teams. However, these efforts remain uneven, particularly among SMEs and are challenged by legacy cultures, fragmented ethical governance and generational divides in digital adaptation (Leonardi, 2020).

Singapore's context has provided a strategic vantage point from which to explore these dynamics. The nation's Smart Nation policy infrastructure combined with its state-linked engineering institutions and commitment to workforce transformation offers both opportunities and tensions for ethical AI deployment in professional settings (IMDA, 2023; SkillsFuture Singapore, 2023).

Practical Recommendations

Recommendations for firms, policymakers, and educators underscore that Al integration is not only a technological shift but also an institutional challenge requiring coordination across multiple levels. While Singapore has established strong foundations through frameworks such as SkillsFuture and IMDA's Model Al Governance Framework, empirical evidence shows persistent gaps in mid-career retraining, SME readiness and curriculum alignment.

As shown in Figure 3, Singapore compares favorably with global leaders in policy ambition but lags behind Japan and South Korea in embedding structured AI training within firms and trails the EU in developing binding accountability mechanisms. Similarly, while initiatives such as NUS's AI Lab illustrate promising educational innovation, systemic integration of ethics and digital fluency into engineering accreditation remains uneven.

Comparative Benchmarks for Al-Integration in Engineering Practice **Key Insight** Singapore has strong SkillsFuture (2023): +30% Cedefop (2020): Only ~35% of METI (2019): >60% of firms OECD (2021): Subsidised regrowth in Al/data course SMEs offer Al-related CPD. report formal AI training skilling boosts mid-career frameworks but gaps in midenrolments since 2020; midparticipation significantly. career retraining compared to career uptake remains low Japan & Korea METI SME programmes SMEs = 99% of enterprises; Digital Europe (2022): Strong SME innovation Singapore SMEs risk lagging Enterprise SG (2022) notes Subsidies for Al audits, support digital audits & Al subsidies and Al-specific tax without targeted Al resource barriers; limited Al governance reviews, and SME governance and incentive governance adoption. participation. IMDA's Model AI Governance EU Al Act (2021-23 draft): METI (2019): Practical AI National Al Strategy (2022): Singapore leads in early Framework (2019, 2020, legally binding requirements ethics guidelines applied to Focus on transparency and principles, but others (EU,

Al ethics incorporated into

METI-aligned accreditation;

formalised in engineering

algorithmic accountability.

Interdisciplinary capstones

and applied AI labs

standardised.

Japan, Korea) move faster on

operationalising compliance.

Singapore's pilot initiatives

curriculum embedding lags

promising, but systemic

Figure 3

Comparative Benchmarks for Al-Integration in Engineering Practice

Note: This is a comparative analytical tool constructed by the author, informed by policy reviews, industry reports and scholarly analysis.

on fairness, explainability, and industry accreditation.

risk management.

standards.

OfS (UK. 2021): Al ethics

embedded into accreditation

These comparative benchmarks highlight that Singapore's strategy must now shift from high-level principles to operational embedding. The combination of workforce incentives, SME-focused support and education-industry alignment will be critical for ensuring that engineers not only adapt to Al-mediated roles but also maintain professional legitimacy and ethical accountability in an evolving digital society.

Recommendations for Engineering Firms

2023) → high-level, principle-

Universities (e.g., NUS AI Lab.

2022) piloting Al-enabled

experiential learning; ethics

based.

Domain

Training (CPD /

SME Support for

Al Adoption

Policy /

Frameworks

Education &

Curriculum

Alignment

Workforce

Reskilling)

Engineering firms must move beyond the adoption of AI tools to embed cultural and structural enablers of human-machine collaboration. Embedding AI ethics training into onboarding and continuing professional development (CPD) is essential; surveys by Deloitte (2023) show that fewer than 40% of global engineering firms currently integrate ethics modules into digital training. In Singapore, early adopters such as Surbana Jurong have established AI capability programs yet broader industry uptake remains uneven. Comparative benchmarks illustrate this gap: in Japan, over 60% of engineering firms report formal AI training schemes (METI, 2019) while in the EU only 35% of SMEs provide structured AI-related CPD (Cedefop, 2020).

Firms should also institutionalize cross-disciplinary teams comprising engineers, data scientists and ethicists to improve decision-making. The World Economic Forum (2023) identifies such teams as a defining feature of "future-ready organizations" a finding echoed in case studies of German and South Korean infrastructure projects where AI adoption accelerated when interdisciplinary teams were standardized. Procurement strategies should further prioritize explainable AI platforms with override functions to safeguard engineers' interpretive authority.

Recommendations for Policymakers

At the systems level, policy institutions shape the structural conditions of AI integration. National initiatives such as SkillsFuture have significantly expanded digital training with participation in AI and data analytics courses increasing by more than 30%

between 2020 and 2023 (SkillsFuture Singapore, 2023). However, mid-career engineers remain underrepresented in these schemes. Comparative evidence from the OECD (2021) suggests that targeted re-skilling subsidies for experienced professionals, as implemented in South Korea and Finland, enhance uptake among older cohorts and strengthen retention.

Support for small and medium-sized enterprises (SMEs) is another critical priority. SMEs account for 99% of Singaporean enterprises yet often lack resources for AI adoption (Enterprise Singapore, 2022). Incentive frameworks including regulatory credits or recognition-based awards could mirror EU programs under the Digital Europe initiative which subsidize SME AI audits and governance reviews (European Commission, 2022).

Stronger coordination between academia and industry is also required. While the Infocomm Media Development Authority's (IMDA) Model AI Governance Framework (2023) provides high-level principles, alignment with educational curricula is limited. Comparative benchmarks show that Japan (METI, 2019) and the UK (OfS, 2021) have already embedded AI ethics into accreditation standards thereby ensuring that graduates enter the workforce with both technical competence and ethical literacy.

Recommendations for Educators and Researchers

Educators must extend learning designs beyond technical proficiency to support professional identity development, ethical reasoning and socio-technical reflection. Experiential modules, such as those piloted at the National University of Singapore's AI Lab in Engineering (NUS, 2022), illustrate how digital twins and predictive modelling scenarios can enhance adaptability and reflective practice. International comparisons reinforce this trend: German engineering programs now integrate AI-enabled design studios while Australian universities have introduced interdisciplinary capstones combining ethics, systems engineering and AI decision-support (Markauskaite & Goodyear, 2017).

For researchers, there is a pressing need to examine cultural and organizational dynamics in AI adoption. Studies from OECD economies show variation in workforce trust in automation with Nordic engineers reporting higher trust than their Asian counterparts (OECD, 2021). In Singapore, where multilingual and multicultural dynamics shape workplace interactions, empirical research could uncover how engineers negotiate identity, legitimacy and trust in AI-mediated contexts. Comparative benchmarks from Seoul, Tokyo and Helsinki would allow Singapore's experience to be positioned globally, highlighting both convergences and distinctive pathways.

Future Research Agenda

Building upon the theoretical scaffolding and empirical observations discussed in this article, several promising avenues for future inquiry emerge. These research directions aim to deepen our understanding of how AI-mediated learning transforms engineering professionalism particularly within complex sociotechnical systems and culturally specific contexts.

Longitudinal Studies on Professional Identity Formation

There is a need for longitudinal multi-phase studies that track the evolution of professional identity among engineers navigating hybrid techno-managerial roles. Such research could examine how individuals experience transitions in knowledge, role expectations and ethical reasoning over time highlighting the affective and cognitive dimensions of identity work (Ibarra, 1999; Trede et al., 2012). Insights from these studies would inform the design of adaptive learning ecosystems that are sensitive to the evolving self-conceptions of professionals.

Comparative Studies Across National Contexts

Future research should explore how AI ethics, learning strategies and organizational norms differ across global innovation hubs such as Singapore, Tokyo and Seoul. These cities represent high-tech societies with distinct institutional logics, cultural norms and policy frameworks surrounding AI. A comparative lens would shed light on the role of institutional culture in shaping responsible AI use, engineer-machine trust dynamics and learning affordances within diverse workplace contexts (Hofstede, 2001; Kankanhalli et al., 2020).

Algorithmic Accountability in Practice

While theoretical discourse on AI ethics is expanding, there is a significant empirical gap regarding how engineers actually negotiate responsibility in real-world AI decision chains particularly in safety-critical domains such as infrastructure, energy and transport. Future studies could adopt ethnographic or case-based methodologies to investigate how engineers interpret, accept, reject or escalate AI-generated insights and how organizational protocols support or constrain such judgment.

Design-Based Research in Workplace Learning

Another fruitful direction lies in design-based research approaches that enable iterative co-creation and testing of Al-augmented learning interventions within" engineering firms. These could include prototype simulation labs, Al-enhanced CPD modules or real-time decision-support systems embedded in digital twins. Such applied research would bridge theory and practice, providing empirical validation for conceptual frameworks while offering scalable models for workforce development.

By advancing an ethically grounded, contextually rich and professionally responsive research agenda, future studies can meaningfully extend the discourse initiated in this article. This call is not only directed to those in the academe but also toward practitioner-scholars, industry leaders and policymakers seeking to shape AI integration in ways that reinforce engineering excellence, social responsibility and human-centered innovation.

References

- Anderson, M. & Anderson, S. L. (2011). *Machine ethics*. Cambridge University Press. https://doi.org/10.1017/CBO9780511978036
- Bessen, J. (2019). *Al and jobs: The role of demand*. NBER Working Paper, No. 24235. https://doi.org/10.3386/w24235
- Billett, S. (2009). Conceptualizing learning experiences: Contributions and mediations of the social, personal, and brute. *Mind, Culture, and Activity, 16(1), 32–47*. https://doi.org/10.1080/10749030802477317
- Billett, S. (2011). Curriculum and pedagogic bases for effectively integrating practice-based experiences. Australian Learning and Teaching Council. https://www.altcexchange.edu.au/group/integrating-practiceexperiences-withinhigher-education
- Billett, S. (2011). Learning through practice: Models, traditions, orientations and approaches. Springer. https://doi.org/10.1007/978-94-007-0473-9
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company. https://doi.org/10.1080/15228053.2014.943094
- Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. *Proceedings of Machine Learning Research*, 81, 1–15. https://proceedings.mlr.press/v81/buolamwini18a.html
- Cascio, W. F., & Montealegre, R. (2016). How technology is changing work and organizations. *Annual Review of Organizational Psychology and Organizational*
- Behavior, 3(1), 349–375. https://doi.org/10.1146/annurev-orgpsych-041015-062352 Cedefop. (2020). Empowering SMEs for learning and innovation. https://www.cedefop.europa.eu/en/publications/3084
- Dall'Alba, G. (2009). Learning professional ways of being: Ambiguities of becoming. Educational Philosophy and Theory, 41(1), 34–45. https://doi.org/10.1111/j.1469-5812.2008.00475.
- Dall'Alba, G. (2009). Learning to be professionals. In G. Dall'Alba (Ed.), *Learning to be professionals* (pp. 1–14). Springer. https://doi.org/10.1007/978-1-4020-8863-8_1
- De Laat, M., & Schreurs, B. (2013). Visualizing informal professional development networks: Building a case for learning analytics in the workplace. *American*
- Behavioral Scientist, 57(10), 1421–1438. https://doi.org/10.1177/0002764213479364

 Deloitte. (2023). Global AI adoption in engineering and infrastructure. Retrieved September 30, 2025, from https://www.deloitte.com/insights/
- Dignum, V. (2020). Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer. https://doi.org/10.1007/978-3-030-30371-6
 Enterprise Singapore. (2022). Annual report: Supporting SMEs in digitalisation. Retrieved September 30, 2025, from https://www.enterprisesg.gov.sg
- Eraut, M. (2004). Informal learning in the workplace. *Studies in Continuing Education*, 26(2), 247–273. https://doi.org/10.1080/158037042000225245
- Evans, K., Guile, D., Harris, J., & Allan, H. (2011). *Putting knowledge to work: A new approach*. NFER. https://www.nfer.ac.uk/putting-knowledge-to-work-anewapproach
- Evans, K., Guile, D., Harris, J., & Allan, H. (2011). Re-thinking work-based learning: For education professionals and professionals who educate. McGraw-Hill Education.
- Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society.

- Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1
- Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). Al4People An ethical framework for a good Al society: Opportunities, risks, principles, and recommendations. *Minds and Machines, 28(4)*, 689–707. https://doi.org/10.1007/s11023-018-9482-5
- Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change, 114*, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
- Friedman, G. (2020). The precarious role of algorithmic management in the gig economy. *Political Economy of Communication, 8*(1), 58–79. https://www.polecom.org/index.php/polecom/article/view/97
- Fuller, A., & Unwin, L. (2004). Expansive learning environments: Integrating organizational and personal development. In H. Rainbird, A. Fuller, & A. Munro (Eds.), *Workplace learning in context* (pp. 126–144). Routledge.
- Gee, J. P. (2000). Identity as an analytic lens for research in education. *Review of Research in Education*, 25, 99–125. https://doi.org/10.2307/1167322
- Greene, D., Hoffmann, A. L., & Stark, L. (2019). Better, nicer, clearer, fairer: A critical assessment of the movement for ethical Al. *Proceedings of the 52nd Hawaii International Conference on System Sciences*. https://doi.org/10.24251/HICSS.2019.258
- Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations (2nd ed.). Sage Publications.
- Holmes, W., Bialik, M., & Fadel, C. (2019). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign.
- Ibarra, H. (1999). Provisional selves: Experimenting with image and identity in professional adaptation. *Administrative Science Quarterly, 44(4)*, 764–791. https://doi.org/10.2307/2667055
- IEEE. (2020). Ethically aligned design: A vision for prioritizing human wellbeing with autonomous and intelligent systems (First edition).

 https://standards.ieee.org/industry-connections/ec/autonomous-systems.html
- Illeris, K. (2007). How we learn: Learning and non-learning in school and beyond. Routledge.
- Infocomm Media Development Authority. (2023). *Singapore's Smart Nation initiatives*. Retrieved September 30, 2025, from https://www.imda.gov.sg/
- Japan Ministry of Economy, Trade and Industry (METI). (2019). *Al strategy report*. Retrieved September 30, 2025, from https://www.meti.go.jp
- Kankanhalli, A., Yeow, A., & Teo, H. H. (2020). Comparing AI ethics across cultures: A review and research agenda. *ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 51(4), 49–64.* https://doi.org/10.1145/3431812.3431817
- Knorr Cetina, K. (1999). *Epistemic cultures: How the sciences make knowledge*. Harvard University Press.
- Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
- Kolb, A. Y., & Kolb, D. A. (2017). Experiential learning theory as a guide for experiential educators in higher education. *Experiential Learning & Teaching in Higher Education*, 1(1), 7–44. https://doi.org/10.46787/elthe.v1i1.62

- Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.
- Lee, J. D., & See, K. A. (2021). Trust in automation: Designing for appropriate reliance. *Human Factors*, 63(1), 1–10. https://doi.org/10.1177/0018720820947907
- Lee, Y.-J., & Clarke, A. (2019). Reshaping professional learning through collaboration: New opportunities for policy, practice and research. *Professional Development in Education*, 45(5), 721–732. https://doi.org/10.1080/19415257.2019.1634624
- Leonardi, P. M. (2020). COVID-19 and the new technologies of organizing: Digital exhaust, digital footprints, and artificial intelligence in the wake of remote work. *Journal of*
- Management Studies, 57(8), 2495–2500. https://doi.org/10.1111/joms.12648 Luckin, R. (2018). Machine learning and human intelligence: The future of education for the 21st century. UCL IOE Press.
- Luckin, R. (2010). Learning contexts as ecological niches: A contribution to the theorising of learning technology. *International Journal of Artificial Intelligence in Education*, 19(2), 137–149.
- Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. *Futures*, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006 Markauskaite, L., & Goodyear, P. (2017). *Epistemic fluency and professional education: Innovation, knowledgeable action and actionable knowledge*. Springer. https://doi.org/10.1007/978-94-007-4369-4
- Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data & Society, 3(2),* 1–21. https://doi.org/10.1177/2053951716679679
- Moon, J. A. (2013). Reflection and employability: Reflection on learning and the roles of the reflective practitioner. Routledge.
- Nagy, A., & Koles, B. (2021). Digital transformation as a platform for strategic renewal.

 Journal of Business Research, 124, 597–609. https://doi.org/10.1016/j.jbusres.2020.10.063
- Nagy, P., & Koles, B. (2021). The digital transformation of professional identity: Theory and research. *Information Systems Journal*, 31(1), 62–88. https://doi.org/10.1111/isj.12253
- Ng, I. C. L., Tan, Y. L., & Zhang, J. (2022). Navigating AI in professional work: Human-centered perspectives and design implications. *AI & Society, 37*(2), 487–498. https://doi.org/10.1007/s00146-021-01193-3
- O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing.
- Sawhney, R., Saxena, M., & Sharma, P. (2023). Reconstructing roles: Identity and trust in hybrid human–Al decision-making. *Al & Society*, *38*, 991–1005. https://doi.org/10.1007/s00146-022-01495-w
- Susskind, R., & Susskind, D. (2015). *The future of the professions: How technology will transform the work of human experts*. Oxford University Press. https://doi.org/10.1093/oso/9780198713395.001.0001
- Trede, F., Macklin, R., & Bridges, D. (2012). Professional identity development: A review of the higher education literature. *Studies in Higher Education*, *37*(3), 365–384. https://doi.org/10.1080/03075079.2010.521237
- Van der Meijden, A., & Visscher, A. J. (2023). Digital twins in engineering education:

- Opportunities and pedagogical implications. *Journal of Engineering Education*, 112(2), 318–335. https://doi.org/10.1002/jee.20489
- Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge University Press. https://doi.org/10.1017/CBO9780511803932
- Williamson, B. (2022). Education and the post-digital: AI and the challenges of epistemic automation. *Learning, Media and Technology, 47*(1), 1–14. https://doi.org/10.1080/17439884.2021.2010373
- Winfield, A. F. T., & Jirotka, M. (2018). Ethical governance is essential to building trust in robotics and artificial intelligence systems. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 376(2133), 20180085. https://doi.org/10.1098/rsta.2018.0085
- Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.