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Abstract: Uncertainty indices at low frequency have garnered increasing attention in financial research due to 
their significant impact on asset returns. This study delves into the emerging field of low-frequency uncertain-
ty indices in financial research, focusing on the Energy-Related Uncertainty Index (EUI) and its implications 
for Bitcoin volatility modeling. Utilizing GARCH-MIDAS models, we compare Bitcoin's volatility under the 
influence of EUI against Bitcoin's realized volatility (RV), examining its predictive power across 28 countries. 
The results reveal two key findings: Firstly, integrating EUI into the GARCH-MIDAS model significantly en-
hances its capability to explain Bitcoin volatility, with the effectiveness differing across countries. EUI's im-
pact on Bitcoin volatility is especially pronounced with approximately a one-year lag. Secondly, although 
there is no apparent leverage effect in Bitcoin returns, EUI exhibits an asymmetric influence on Bitcoin volatil-
ity, highlighting its essential role in volatility modeling. These findings hold significance for investors and 
policymakers, providing valuable insights to enhance risk management strategies in the volatile cryptocur-
rency markets. 
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1. Introduction 

Digital assets have become a hot trend in the modern financial landscape, revolutionizing how we per-
ceive and handle value. These assets, encompassing a wide range of forms such as digital art, music, and 
more prominently, cryptocurrencies, offer a new level of security, transparency, and accessibility (Wątorek et 
al., 2021). Cryptocurrencies are decentralized digital currencies that use blockchain technology to secure 
transactions, making them immune to traditional banking systems and central authorities (S. V. Jin, 2024). At 
the forefront of this revolution is Bitcoin, the first and most well-known cryptocurrency. Introduced in 2009 by 
an anonymous entity known as Satoshi Nakamoto, Bitcoin has paved the way for the development of numer-
ous other cryptocurrencies and blockchain applications. Bitcoin operates on a peer-to-peer network (Howell et 
al., 2023), enabling users to send and receive payments without the need for intermediaries. Its limited supply 
of 21 million coins ensures scarcity, often likened to digital gold (Baker et al., 2016; Cevik et al., 2022). Bitcoin's 
influence has not only introduced a new era of financial innovation but also inspired the creation of an entire 
ecosystem of digital currencies, each offering unique features and applications. As digital assets continue to 
gain traction, Bitcoin remains a crucial cornerstone, symbolizing the transformative potential of blockchain 
technology in the global economy (Ferdous et al., 2021). Many investors are drawn to Bitcoin due to its poten-
tial for high returns. Its value has surged dramatically over the years, making early adopters significant prof-
its. However, Bitcoin is also known for its extreme volatility. Prices can fluctuate wildly within short periods, 
posing substantial risks alongside the potential rewards (Rani et al., 2024). To navigate these fluctuations, in-
vestors pay close attention to Bitcoin's volatility. By analyzing market trends and using strategic trading 
methods, they aim to maximize their gains while mitigating the risks associated with Bitcoin's unpredictable 
nature. This dynamic has made Bitcoin both an exciting and challenging asset in the digital economy. 

Among various economic indicators, low-frequency uncertainty factors have proven effective in predict-
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ing market volatility, including Bitcoin (Isah et al., 2024; Yu et al., 2024b). However, as the macroeconomic en-
vironment evolves, more low-frequency indices are being discovered and gaining attention. One such emerg-
ing indicator is energy-related uncertainty, which reflects fluctuations and instability in the energy markets 
(Dang et al., 2023a). Energy uncertainty can significantly impact Bitcoin, as energy consumption is integral to 
Bitcoin mining. This relationship suggests that changes in energy costs and availability might influence 
Bitcoin's value and volatility. Climate change exacerbates this uncertainty by causing more frequent and se-
vere weather events, disrupting energy supply chains, and increasing costs. Despite its potential, the ability of 
energy-related uncertainty to predict Bitcoin's behavior remains underexplored. This research gap raises two 
questions: Can the EUI serve as a reliable predictor of Bitcoin volatility, and how does the EUI's predictive 
power vary across different countries? Investigating this relationship could provide deeper insights into 
Bitcoin's market dynamics and offer investors a new tool for navigating its inherent risks. By addressing this 
gap, future research can enhance our understanding of the factors driving Bitcoin's value and volatility in an 
increasingly complex economic landscape influenced by climate change. 

Motivated by the above, we utilize a generalized autoregressive conditional heteroskedasticity with 
mixed data sampling (GARCH-MIDAS) model to analyze Bitcoin volatility influenced by the EUI and real-
ized volatility. Additionally, we extend our analysis to 28 countries with available EUI indices. This research 
reveals that Firstly, incorporating EUI into the GARCH-MIDAS model markedly improves its ability to ex-
plain Bitcoin volatility, with effectiveness varying by country. EUI's impact on Bitcoin volatility is particularly 
significant with around 12 lags. Secondly, although Bitcoin returns do not show a leverage effect, EUI has an 
asymmetric impact on volatility, emphasizing its vital role in volatility modeling. These findings are signifi-
cant for investors and policymakers, offering valuable insights to improve risk management strategies in the 
highly volatile cryptocurrency markets. 

This paper potentially contributes and innovates in the following three areas: First, it is the first to exam-
ine the impact of the newly released Energy-Related Uncertainty Index on Bitcoin volatility, shedding light on 
how external economic factors, especially energy market fluctuations, affect the cryptocurrency market. Sec-
ond, by evaluating the predictive power of the EUI across 28 countries, the research provides a global per-
spective on the influence of energy-related uncertainties on Bitcoin volatility. This can guide policymakers in 
formulating region-specific regulations to stabilize their local cryptocurrency markets. Third, the findings as-
sist policymakers and regulatory bodies in understanding the systemic risks associated with cryptocurrency 
markets, particularly in the context of energy consumption and sustainability. This knowledge can inform 
strategies to mitigate potential risks at the intersection of energy markets and digital currencies. 

The remainder of this paper is designed as follows. Section 2 reviews the work in related literature. Sec-
tions 3 and 4 present the methodology and data, respectively. Section 5 discusses the empirical results. Section 
6 concludes the findings. 

2. Literature Review 

2.1. Low-Frequency Macroeconomic Uncertainty 

Since the global financial crisis, macroeconomic uncertainty has gained significant attention. Low-
frequency predictors like Economic Policy Uncertainty (EPU), Trade Policy Uncertainty (TPU) by Baker et al. 
(2016b), Geopolitical Risk (GPR) by Caldara & Iacoviello (2022), Climate Policy Uncertainty (CPU) by Gavrii-
lidis (2021b), and the World Uncertainty Index (WUI) by Ahir et al. (2022b) have been recognized for their ef-
fectiveness in forecasting market volatility, compensating for the limitations of high-frequency indicators. In 
existing literature, GARCH models are widely used for analyzing volatility. With GARCH-based models, 
scholars have demonstrated the predictive effectiveness of low-frequency predictors in the stock market (As-
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gharian et al., 2013; Li et al., 2023; Roudari et al., 2023) and futures market (Fang et al., 2023; Jia et al., 2023). 
Most research has focused on policy uncertainties including EPU and TPU. Notably, D. Jin & Yu (2023a) found 
that climate policy uncertainty significantly affects cryptocurrency price volatility, Xia et al. (2023) showed 
global EPU indices impact Bitcoin's long-term volatility, and Wang et al. (2023) examined the effects of fiscal 
and monetary policy uncertainty on Bitcoin volatility. To address gaps in energy finance research, this paper 
investigates the predictive effectiveness of the EUI on Bitcoin return volatility (Dang et al., 2023b). Previous 
studies have validated predictors like CPU (D. Jin & Yu, 2023b), GPR (Ferretti et al., 1989), and macro news 
surprises (Ch’ien et al., 2004) for cryptocurrency volatility. Scholars have also explored the impact of climate 
risk on the cryptocurrency environment (Zribi et al., 2023) and the relationship between Bitcoin and energy 
prices (Syuhada et al., 2022). However, the price of oil is not a good proxy for energy prices (Cross & Nguyen, 
2018), and we need a more comprehensive predictor of energy uncertainty, where EUI fulfills it very well. The 
relationship between EUI as a new predictor and cryptocurrency volatility has not been validated, which 
prompts us to focus on whether EUI can provide a valid prediction for cryptocurrency volatility. 

2.2. Energy Uncertainty and Cryptocurrency 

Currently, much of the predictive research available on cryptocurrencies focuses on the relationship be-
tween digital currencies and economic policy uncertainty, as well as the diversification and hedging links be-
tween digital currencies and traditional financial assets. Given the massive consumption of cryptocurrencies, 
especially Bitcoin (Corbet et al., 2020), there are growing concerns about the ecological consequences of cryp-
tocurrencies. In many studies, Bitcoins are viewed as assets rather than currencies due to their high volatility, 
it is also sensitive to other commodities in the market and other macroeconomic indicators (Dyhrberg, 2016; 
Yamada et al., 2013). On the other hand, with the development of clean energy sources and a clear policy di-
rection toward sustainability, the issue of Bitcoin's consumption of energy may be resolved as a sustainable 
investment option for consumers, and demand changes (Lee et al., 2022). 

The price of Bitcoin has a positive relationship with energy consumption and carbon emissions, and a 
high Bitcoin price also increases Bitcoin's energy demand (Qin et al., 2023). Price movements of commodities 
in the energy sector have also had a positive impact on Bitcoin price movements (Meiryani et al., 2022). The 
Bitcoin market and crude oil prices also show significant two-way spillover effects (Okorie & Lin, 2020). 

3. Methodology 

Engle et al. (2013) expand on the GARCH model of Bollerslev (1986) by developing the GARCH-MIDAS 
(GM) model, which accommodates variations at different frequencies. To explore volatility dynamics asym-
metry, Amendola et al. (2019) employ the Double Asymmetric GARCH-MIDAS (DAGM) model. This model 
integrates the asymmetric GJR-GARCH model by Glosten et al. (1993) to capture daily volatility dynamics 
(the first asymmetry) and incorporates a lower frequency variable that influences the slow-moving volatility 
level through the MIDAS component, introducing differential effects based on the variable's sign (the second 
asymmetry). 

Following Amendola et al. (2019, 2020, 2021), this paper initially utilizes the GM and DAGM models to 
evaluate Bitcoin volatility under varying EUI conditions. The Bitcoin returns follow the process 𝑟𝑟𝑖𝑖,𝑡𝑡 =
�𝜏𝜏𝑡𝑡 × 𝑔𝑔𝑖𝑖,𝑡𝑡𝜀𝜀𝑖𝑖,𝑡𝑡, with 𝜀𝜀𝑖𝑖,𝑡𝑡�𝛷𝛷𝑖𝑖,𝑡𝑡−1 ∼ 𝑡𝑡𝜈𝜈(0,1) in which 𝜏𝜏𝑡𝑡 and 𝑔𝑔𝑖𝑖,𝑡𝑡 indicate the long-term and short-term component 
of variance, respectively. In the GM and DAGM model, 𝑔𝑔𝑖𝑖,𝑡𝑡 follows a unit-mean reverting GARCH(1,1) pro-
cess specified by 

𝑔𝑔𝑖𝑖,𝑡𝑡 = (1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼
�𝑟𝑟𝑖𝑖−1,𝑡𝑡�2

𝜏𝜏𝑡𝑡
+ 𝛽𝛽𝑔𝑔𝑖𝑖−1,𝑡𝑡 (1) 



4 
 

and a GJR-GARCH(1,1) process expressed as 

𝑔𝑔𝑖𝑖,𝑡𝑡 = (1 − 𝛼𝛼 − 𝛾𝛾 2⁄ − 𝛽𝛽) + �𝛼𝛼 + 𝛾𝛾 ⋅ 𝔗𝔗�𝑟𝑟𝑖𝑖−1,𝑡𝑡<0��
�𝑟𝑟𝑖𝑖−1,𝑡𝑡�2

𝜏𝜏𝑡𝑡
+ 𝛽𝛽𝑔𝑔𝑖𝑖−1,𝑡𝑡 (2) 

with 𝔗𝔗(⋅) is an indicator function. As is typical in a GM model, the short-run parameters are subject to the con-
straints: 𝛼𝛼 > 0;  𝛽𝛽 ≥ 0;  𝛼𝛼 + 𝛽𝛽 < 1 . In the DAGM model, the constraints are 𝛼𝛼 > 0;  𝛽𝛽 ≥ 0;  𝛾𝛾 ≥ 0;  𝛼𝛼 + 𝛽𝛽 +
𝛾𝛾 2⁄ < 1. Meanwhile, 𝜏𝜏𝑡𝑡 represents the long-term component of the local level of volatility, defined as 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑡𝑡) = 𝑚𝑚 + 𝜃𝜃 � 𝛿𝛿𝑗𝑗(𝜔𝜔)
𝐾𝐾

𝑗𝑗=1
𝑋𝑋𝑡𝑡−𝑗𝑗 (3) 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑡𝑡) = 𝑚𝑚 + 𝜃𝜃+ � 𝛿𝛿𝑘𝑘(𝜔𝜔)+
𝐾𝐾

𝑘𝑘=1
𝑋𝑋𝑡𝑡−𝑘𝑘𝔗𝔗(𝑋𝑋𝑡𝑡−𝑘𝑘≥0) + 𝜃𝜃− � 𝛿𝛿𝑘𝑘(𝜔𝜔)−

𝐾𝐾

𝑘𝑘=1
𝑋𝑋𝑡𝑡−𝑘𝑘𝔗𝔗(𝑋𝑋𝑡𝑡−𝑘𝑘<0) (4) 

where 𝑚𝑚 serves as the intercept, 𝜃𝜃 represents the general response to the EUI or RV, while 𝜃𝜃+ and 𝜃𝜃− account 
for the asymmetric responses to the one-sided filter. 𝛿𝛿𝑗𝑗(𝜔𝜔), 𝛿𝛿𝑘𝑘(𝜔𝜔)+ and 𝛿𝛿𝑘𝑘(𝜔𝜔)− appropriately weight the past K 
realizations of the exogenous stationary predetermined variable, denoted 𝑋𝑋𝑡𝑡−𝑘𝑘. Specifically, monthly realized 

volatility is calculated as 𝑅𝑅𝑅𝑅 = �∑ 𝑟𝑟𝑖𝑖,𝑡𝑡
221

𝑖𝑖=1 . Throughout this work, the Beta function will be utilized as the 
weighting function for all the GM models, which is expressed as 

𝛿𝛿𝑘𝑘(𝜔𝜔) =
(𝑘𝑘/𝐾𝐾)𝜔𝜔1−1(1 − 𝑘𝑘 𝐾𝐾⁄ )𝜔𝜔2−1

∑ (𝑗𝑗/𝐾𝐾)𝜔𝜔1−1(1 − 𝑗𝑗 𝐾𝐾⁄ )𝜔𝜔2−1𝐾𝐾
𝑗𝑗=1

(5) 

with 𝜔𝜔1 = 1, which allows for greater weighting of the most recent observations (following a monotonically 
decreasing weighting scheme). The Beta functions ensure that ∑ 𝛿𝛿𝑘𝑘(𝜔𝜔2)

𝐾𝐾
𝑘𝑘=1 = 1. 

4. Data 

Bitcoin data from September 30, 2017, to October 1, 2023, was acquired to coincide with the availability of 
the EUI. This timeframe encompasses significant events such as the US−China trade conflict, the COVID-19 
epidemic, and the Ukraine-Russia military engagement. These events have had notable impacts on financial 
markets, offering a comprehensive perspective on the dynamic correlations within the studied market. To ac-
commodate low-frequency uncertainty, monthly uncertainty data predating the Bitcoin dataset was obtained 
and realized volatility was calculated accordingly with a matching length. Monthly uncertainty factors were 
sourced from www.policyuncertainty.com. Further details regarding variables can be found in Table 1. All the 
daily data are converted into logarithmic percentage return series as 𝑟𝑟𝑡𝑡 = 𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡−1⁄ ) × 100 and monthly data 
are converted into the difference in logarithms as ∆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = 𝑙𝑙𝑙𝑙(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡−1⁄ ) × 100. 

The descriptive statistics in Table 2 for Bitcoin and energy−related uncertainty indices across 28 countries 
reveal significant impacts on Bitcoin volatility. Bitcoin shows high volatility with extreme maximum (147.418) 
and minimum (−84.883) values, a high standard deviation (5.490), significant skewness (4.180), and kurtosis 
(166.774), indicating frequent extreme price movements. The global energy uncertainty index also displays 
substantial variability, with a high standard deviation (58.208) and notable kurtosis (10.170). Country-specific 
impacts vary, with Russia and Canada showing significant volatility and high standard deviations, while Ja-
pan and Mexico exhibit consistent adverse effects with negative mean values and high negative skewness. The 
ADF test confirms the stationarity of these indices, and the L-B and ARCH tests indicate significant autocorre-
lation and heteroscedasticity. These findings underscore the critical influence of energy uncertainty on Bitcoin 
volatility, highlighting the need for investors to consider these factors in their strategies, as the effects vary 
considerably across different countries. 

The correlation matrix in Figure 1 reveals varying degrees of relationships between the global energy un-
certainty index (Globe) and country-specific indices. Notably, Russia (0.43) and China (0.20) exhibit strong 

http://www.policyuncertainty.com/


5 
 

positive correlations with the global index, indicating their energy uncertainties are significantly influenced 
by global trends. Brazil (0.19), Sweden (0.20), and the UK (0.16) also show moderate correlations. Conversely, 
countries like Australia (0.01), Belgium (0.02), and Canada (0.01) display weak correlations, suggesting more 
localized energy uncertainty influences. The US and UK exhibit moderate inter-country correlations, high-
lighting regional interconnectedness. Overall, the matrix underscores how global energy uncertainties impact 
certain key economies while others remain more insulated from these global dynamics. 

Table 1. Summary of variables. 

Variable Abbr. Market Source 
Bitcoin Closing Prices BTC Global Bitcoin market www.investing.com 
Bitcoin Realized Volatility RV Risk from Bitcoin volatility Author calculations 
Energy-Related Uncertainty EUI Risk from energy uncertainty www.policyuncertainty.com 

Table 2. Descriptive statistics. 

 Mean Max. Min. Std. Dev. Skew. Kurt. J−B ADF L−B ARCH 
BTC 0.212 147.418 −84.883 5.490 4.180 166.774 4562412.273*** −18.587*** 328.774*** 691.411*** 

Global 0.127 332.541 −316.743 58.208 −0.156 10.170 1384.776*** −7.757*** 243.382*** 71.664*** 
Australia −0.597 160.335 −195.833 52.173 −0.174 1.197 17.280*** −7.932*** 61.853*** 68.198*** 
Belgium −0.421 325.180 −279.864 61.758 0.131 4.471 223.202*** −6.158*** 163.339*** 35.413** 

Brazil 0.377 157.556 −216.763 53.643 0.032 0.807 7.291** −5.911*** 64.725*** 36.411** 
Canada 0.528 220.265 −308.007 63.826 −0.418 2.811 95.688*** −7.862*** 102.177*** 88.372*** 

Chile 0.448 131.445 −133.973 49.060 0.108 0.154 0.782 −6.948*** 56.049*** 23.075 
China 0.292 213.216 −218.401 65.909 −0.042 0.880 8.700** −6.903*** 108.098*** 60.346*** 

Colombia −0.013 430.321 −616.083 69.003 −1.147 33.845 12801.890*** −8.191*** 70.644*** 70.175*** 
Croatia 0.284 226.133 −210.998 63.759 −0.019 1.299 18.778*** −6.961*** 113.733*** 62.044*** 

Denmark 0.186 271.852 −588.473 73.887 −1.714 14.988 2629.933*** −6.464*** 105.275*** 17.316 
France −0.237 151.452 −190.480 45.747 −0.088 2.277 58.041*** −6.561*** 95.692*** 48.276*** 

Germany 0.156 267.698 −253.838 53.809 0.425 3.849 172.866*** −5.232*** 55.154*** 71.620*** 
Greece 1.179 297.623 −145.004 52.515 0.550 3.130 122.502*** −6.551*** 63.680*** 9.273 
India −0.193 233.547 −205.509 55.628 0.119 1.239 17.691*** −6.594*** 41.838*** 20.270 

Ireland 0.367 290.296 −220.820 49.463 0.251 5.426 330.307*** −5.520*** 70.330*** 25.522 
Italy 0.511 144.424 −139.490 45.736 0.049 0.078 0.173 −6.145*** 54.609*** 18.420 

Japan −1.426 158.386 −359.801 55.330 −0.807 5.901 416.370*** −5.319*** 49.771*** 8.865 
Mexico −2.082 119.704 −414.505 47.433 −2.438 20.422 4904.155*** −5.825*** 67.431*** 3.272 

Netherlands −0.148 251.143 −246.965 57.632 0.115 2.751 84.806*** −6.961*** 117.390*** 92.479*** 
New Zealand −0.608 234.065 −159.828 59.592 0.217 0.635 6.587** −6.983*** 80.044*** 36.529** 

Pakistan −0.188 277.614 −171.027 56.438 0.310 2.537 75.891*** −6.144*** 59.088*** 46.819*** 
Russia 1.139 578.280 −195.844 57.729 3.602 36.145 15111.670*** −6.229*** 76.538*** 4.163 

Singapore −0.719 214.677 −177.772 60.479 0.251 0.382 4.431 −7.247*** 59.862*** 26.317 
South Korea −1.014 140.376 −258.829 45.749 −0.552 3.708 166.497*** −6.636*** 49.492*** 11.381 

Spain 0.074 181.219 −180.968 54.842 0.117 0.686 5.945** −6.570*** 95.712*** 48.758*** 
Sweden 0.033 180.397 −231.733 55.520 −0.083 1.866 39.025*** −6.668*** 102.668*** 59.837*** 

UK −0.481 107.600 −113.405 37.451 −0.112 0.433 2.639 −6.805*** 57.525*** 12.678 
US 0.082 353.591 −383.996 62.630 −0.211 7.977 709.817*** −7.058*** 57.192*** 69.277*** 

Vietnam −0.509 276.616 −203.814 71.228 0.331 0.960 15.127*** −6.720*** 107.115*** 20.968 
Notes: *** and ** denote statistical significance at 1% and 5% levels, respectively. J-B (Jarque-Bera Test) tests for normality 
based on skewness and kurtosis, ADF (Augmented Dickey-Fuller Test) checks for stationarity in a time series, L-B (Ljung-
Box Test) detects autocorrelation in time series data, and ARCH identifies the presence of heteroscedasticity. 

http://www.investing.com/
http://www.policyuncertainty.com/
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Figure 1. Correlation heatmap among EUIs. 

5. Empirical Results 

5.1. Bitcoin Volatility Under Global EUI 

The estimated results from the GM models in Table 3, comparing realized volatility and the energy uncer-
tainty index as external regressors across different lag periods (K=6,12,18), provide key insights into Bitcoin 
volatility prediction. The 𝛾𝛾 parameter is not significant in any of the models, indicating no apparent leverage 
effect, meaning negative return shocks do not asymmetrically affect future volatility. The 𝛼𝛼 and 𝛽𝛽 parameters 
are highly significant across all models, underscoring the strong explanatory power and persistence of volatil-
ity in Bitcoin markets. Notably, the 𝜃𝜃 parameters for EUI shocks indicate potential asymmetries. In the energy 
uncertainty index models, the 𝜃𝜃 parameter for negative shocks is significant and negative across all lag peri-
ods, suggesting that increased energy uncertainty correlates with decreased Bitcoin volatility, potentially re-
flecting Bitcoin’s role as a hedge during energy market disruptions. Model evaluation metrics, including AIC, 
BIC, and log-likelihood, consistently favor models using the energy uncertainty index, with the best perfor-
mance observed at a lag period of 12, approximately one year. Figure 2 further substantiates this finding. 
Lower AIC and BIC values, along with higher log-likelihood values, indicate superior model fit and predictive 
accuracy, underscoring the effectiveness of the energy uncertainty index in capturing Bitcoin volatility dy-
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namics within the GM framework. 
We then proceed with further analysis using the DAGM model. The estimated results for the DAGM 

models in Table 4, comparing realized volatility and the energy uncertainty index as external regressors across 
the same lag periods, provide more detailed insights into the asymmetric impacts of positive and negative 
shocks. The 𝛼𝛼 parameter is highly significant at the 1% level across all models, indicating robust explanatory 
power, with slightly higher values in the realized volatility models. The 𝛾𝛾 parameter is insignificant, suggest-
ing no substantial leverage effect, meaning shocks do not asymmetrically affect future volatility, consistent 
with GM models. The 𝛽𝛽 parameter is highly significant across all models, underscoring the persistent nature 
of Bitcoin volatility. Notably, the parameters for positive and negative shocks 𝜃𝜃+ and 𝜃𝜃− reveal different im-
pacts of positive and negative shocks from EUI and RV, namely asymmetries. Specifically, under EUI, 𝜃𝜃− 
shows significant negative values across all lag periods, indicating that negative energy uncertainty signifi-
cantly reduces Bitcoin volatility. The parameters 𝜔𝜔2

+ and 𝜔𝜔2
− for both positive and negative shocks are highly 

significant, emphasizing the importance of asymmetry in external regressors. Furthermore, model evaluation 
metrics, including AIC, BIC, and log-likelihood, favor the energy uncertainty index models, particularly at a 
lag period of 12. This finding is further validated by Figure 3. These metrics suggest superior model fit and 
predictive accuracy, highlighting the effectiveness of the DAGM model, especially with energy uncertainty as 
an external regressor, in capturing the complex dynamics of Bitcoin volatility. 

Table 3. Estimated results for GARCH-MIDAS models. 

 GM−RV GM−EUI 
 K=6 K=12 K=18 K=6 K=12 K=18 

𝛼𝛼 
0.170*** 0.173*** 0.173*** 0.166*** 0.166*** 0.168*** 
(0.019) (0.020) (0.020) (0.018) (0.019) (0.019) 

𝛾𝛾 
−0.004 −0.006 −0.006 0.002 0.002 0.002 
(0.024) (0.025) (0.025) (0.026) (0.026) (0.026) 

𝛽𝛽 
0.827*** 0.825*** 0.825*** 0.832*** 0.832*** 0.830*** 
(0.021) (0.022) (0.022) (0.021) (0.021) (0.021) 

𝑚𝑚 
4.363*** 4.227*** 4.226*** 5.763*** 6.154*** 6.075*** 
(0.364) (0.446) (0.455) (0.641) (0.588) (0.554) 

𝜃𝜃 
0.194 0.962** 0.962* −2.164** −6.318*** −5.492*** 
(0.136) (0.429) (0.506) (0.900) (1.177) (0.935) 

𝜔𝜔2 
1.014*** 1.011*** 1.011*** 1.001*** 1.229*** 1.982*** 
(0.280) (0.312) (0.279) (0.365) (0.289) (0.450) 

𝜈𝜈 
3.214*** 3.205*** 3.205*** 3.156*** 3.154*** 3.146*** 
(0.117) (0.122) (0.118) (0.116) (0.117) (0.116) 

AIC 16228.19 16223.93 16227.97 15882.15 15878.14 15880.89 
BIC 16272.12 16267.86 16271.90 15925.95 15921.95 15924.70 
LL −8107.09 −8104.96 −8106.98 −7934.07 −7932.07 −7933.45 

Notes: The standard deviations are reported in parentheses. ***, **, and * denote statistical significance at 1%, 5%, and 10% 
levels, respectively. 



8 
 

 

Figure 2. Short- and long-term volatility estimated by GM models. 

Table 4. Estimated results for double asymmetry GARCH-MIDAS models. 

 DAGM−RV DAGM−EUI 
 K=6 K=12 K=18 K=6 K=12 K=18 

𝛼𝛼 
0.180*** 0.193*** 0.193*** 0.172*** 0.186*** 0.187*** 
(0.019) (0.020) (0.020) (0.020) (0.030) (0.022) 

𝛾𝛾 
−0.011 −0.019 −0.018 −0.001 −0.010 −0.012 
(0.027) (0.030) (0.030) (0.030) (0.048) (0.027) 

𝛽𝛽 
0.824*** 0.815*** 0.815*** 0.828*** 0.818*** 0.817*** 
(0.018) (0.019) (0.019) (0.021) (0.022) (0.023) 

𝑚𝑚 
7.202*** 7.621*** 7.398*** 5.402*** 4.109 2.335*** 
(0.661) (0.568) (0.926) (0.738) (2.646) (0.706) 

𝜃𝜃+ 
−0.110 1.528*** 1.509*** −0.791* −2.806* 0.823* 
(0.082) (0.490) (0.494) (0.435) (1.484) (0.474) 

𝜔𝜔2
+ 

1.023*** 1.022*** 1.020*** 1.001* 1.001** 3.992*** 
(0.165) (0.160) (0.162) (0.544) (0.398) (1.103) 

𝜃𝜃− 
6.727*** 11.527*** 11.476*** −9.388*** −31.066*** −38.147*** 
(0.946) (0.883) (0.390) (0.445) (4.213) (0.470) 

𝜔𝜔2
− 

1.614*** 1.833*** 1.829*** 1.222*** 1.145*** 1.475*** 
(0.002) (0.282) (0.246) (0.266) (0.111) (0.121) 

𝜈𝜈 
3.099*** 3.023*** 3.025*** 3.104*** 3.021*** 3.040*** 
(0.105) (0.099) (0.099) (0.109) (0.107) (0.100) 

AIC 16222.69 16202.33 16202.75 16212.44 16190.73 16202.43 
BIC 16279.17 16258.81 16259.23 16268.92 16247.21 16258.91 
LL −8102.35 −8092.16 −8092.37 −8097.22 −8086.36 −8092.21 

Notes: See notes in Table 3. 
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Figure 3. Short- and long-term volatility estimated by DAGM models. 

5.2. Bitcoin Volatility Under Country EUI 

According to the empirical results presented in Tables 3 and 4, when the lag length K=12 is used, the val-
ues of AIC and BIC are generally lower, indicating a superior model fit. Consequently, in this section, we have 
selected K=12 to estimate the country-specific impact of the energy uncertainty index. Additionally, given the 
absence of any leverage effect, we have employed the standard GARCH model. Table 5 displays the results of 
the GM model estimations for the energy uncertainty index across 28 countries, revealing significant varia-
tions in model performance and effectiveness. The evaluation of model quality using AIC, BIC, and log-
likelihood metrics indicates that the incorporation of the energy uncertainty index enhances the predictive 
accuracy for Bitcoin volatility across diverse geopolitical contexts. Countries such as Belgium, France, and 
Greece exhibit particularly robust model performance, characterized by notably lower AIC and BIC values 
and higher log-likelihood values relative to other countries. This suggests that the energy uncertainty index 
serves as a more effective predictor of Bitcoin volatility in these regions. Conversely, countries like China and 
Vietnam demonstrate different dynamics, with relatively higher AIC and BIC values, indicating less im-
provement in predictive accuracy. These findings underscore the varying impact of energy uncertainty on 
Bitcoin volatility across different countries. In conclusion, the energy uncertainty index significantly enhances 
the GM model's ability to predict Bitcoin volatility, particularly in specific countries, underscoring its im-
portance as an external regressor in volatility modeling. 
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Table 5. Estimated results for GARCH-MIDAS models with EUI in 28 countries. 

 Australia Belgium Brazil Canada Chile China Colombia Croatia Denmark France Germany Greece India Ireland 

𝛼𝛼 
0.196*** 0.185*** 0.181*** 0.180*** 0.179*** 0.178*** 0.180*** 0.177*** 0.182*** 0.183*** 0.181*** 0.176*** 0.180*** 0.178*** 
(0.023) (0.022) (0.022) (0.022) (0.021) (0.021) (0.022) (0.021) (0.022) (0.022) (0.022) (0.021) (0.022) (0.021) 

𝛽𝛽 
0.803*** 0.813*** 0.818*** 0.819*** 0.820*** 0.821*** 0.819*** 0.822*** 0.817*** 0.816*** 0.818*** 0.823*** 0.819*** 0.820*** 
(0.023) (0.023) (0.022) (0.022) (0.022) (0.021) (0.022) (0.021) (0.022) (0.022) (0.022) (0.021) (0.022) (0.021) 

𝑚𝑚 
6.211*** 6.320*** 6.063*** 6.130*** 6.041*** 5.460*** 6.014*** 6.033*** 6.185*** 6.198*** 5.955*** 6.149*** 5.841*** 5.851*** 
(0.536) (0.597) (0.810) (0.597) (0.609) (0.610) (0.488) (0.439) (0.533) (0.496) (0.640) (0.657) (0.503) (0.600) 

𝜃𝜃 
−2.730*** −3.439*** −0.961 −1.896** −0.564 0.776** −0.832 −0.699 −1.782 −1.871*** −1.283* −1.930* 0.367*** −6.125*** 
(0.947) (1.224) (1.236) (0.884) (0.738) (0.369) (0.952) (1.957) (2.059) (0.680) (0.676) (1.136) (0.093) (1.565) 

𝜔𝜔 
1.858*** 1.022*** 2.629*** 1.001*** 2.214*** 1.001** 1.933*** 2.053 1.982*** 1.770*** 1.001*** 1.001* 12.068*** 1.497*** 
(0.277) (0.190) (0.769) (0.304) (0.496) (0.410) (0.559) (8.815) (0.455) (0.679) (0.343) (0.582) (2.146) (0.190) 

𝜈𝜈 
3.074*** 3.077*** 3.167*** 3.170*** 3.174*** 3.179*** 3.174*** 3.182*** 3.147*** 3.141*** 3.172*** 3.187*** 3.163*** 3.106*** 
(0.110) (0.121) (0.113) (0.116) (0.116) (0.114) (0.117) (0.137) (0.120) (0.115) (0.116) (0.118) (0.114) (0.112) 

AIC 14285.38 14284.03 14307.66 14307.22 14307.79 14307.80 14307.85 14308.32 14306.49 14305.95 14307.60 14304.92 14303.97 14283.41 
BIC 14322.28 14320.93 14344.56 14344.12 14344.69 14344.71 14344.76 14345.23 14343.40 14342.85 14344.50 14341.82 14340.88 14320.32 
LL −7136.69 −7136.01 −7147.83 −7147.61 −7147.89 −7147.90 −7147.93 −7148.16 −7147.25 −7146.97 −7147.80 −7146.46 −7145.99 −7135.71 

 Italy Japan Mexico Netherlands New Zealand Pakistan Russia Singapore South Korea Spain Sweden UK US Vietnam 

𝛼𝛼 
0.176*** 0.177*** 0.180*** 0.181*** 0.181*** 0.186*** 0.180*** 0.177*** 0.190*** 0.175*** 0.176*** 0.176*** 0.186*** 0.177*** 
(0.020) (0.022) (0.021) (0.021) (0.023) (0.023) (0.021) (0.022) (0.026) (0.020) (0.023) (0.018) (0.023) (0.020) 

𝛽𝛽 
0.823*** 0.822*** 0.819*** 0.818*** 0.818*** 0.813*** 0.820*** 0.822*** 0.809*** 0.824*** 0.823*** 0.823*** 0.813*** 0.822*** 
(0.021) (0.022) (0.021) (0.021) (0.023) (0.023) (0.021) (0.022) (0.026) (0.020) (0.022) (0.018) (0.023) (0.020) 

𝑚𝑚 
5.483*** 5.814*** 5.617*** 6.311*** 5.963*** 6.390*** 6.020*** 6.026*** 6.036*** 5.929*** 6.069*** 6.332*** 6.366*** 5.979*** 
(0.455) (0.456) (1.186) (0.486) (0.553) (0.478) (0.508) (0.461) (0.580) (0.485) (1.099) (0.547) (0.528) (0.297) 

𝜃𝜃 
0.803* 0.488*** 3.021 −2.488*** 0.091 −1.311* 0.437 −0.716 −3.144* −0.413* −1.137 −6.587*** −2.083*** −0.408 
(0.435) (0.173) (2.419) (0.842) (0.261) (0.791) (0.312) (0.799) (1.685) (0.235) (1.994) (0.670) (0.763) (0.371) 

𝜔𝜔 
1.003** 16.161*** 1.346 1.076*** 8.496*** 1.025*** 9.688*** 1.001*** 1.152*** 5.095*** 1.790*** 1.432*** 1.507*** 4.277*** 
(0.434) (0.513) (1.005) (0.308) (0.642) (0.191) (0.460) (0.343) (0.239) (1.381) (0.392) (0.250) (0.275) (0.468) 

𝜈𝜈 
3.193*** 3.157*** 3.171*** 3.144*** 3.173*** 3.143*** 3.165*** 3.172*** 3.106*** 3.183*** 3.171*** 3.103*** 3.117*** 3.186*** 
(0.115) (0.115) (0.115) (0.115) (0.114) (0.113) (0.114) (0.115) (0.126) (0.115) (0.118) (0.109) (0.116) (0.114) 

AIC 14308.42 14298.49 14304.01 14299.08 14308.60 14304.21 14306.13 14307.09 14297.65 14306.36 14305.50 14276.52 14300.20 14306.75 
BIC 14345.33 14335.39 14340.92 14335.99 14345.50 14341.11 14343.04 14344.00 14334.56 14343.27 14342.40 14313.43 14337.10 14343.65 
LL −7148.21 −7143.24 −7146.01 −7143.54 −7148.30 −7146.10 −7147.07 −7147.55 −7142.83 −7147.18 −7146.75 −7132.26 −7144.10 −7147.37 

Notes: See notes in Table 3. 



11 
 

6. Conclusions 

This paper applies the GM model to analyze the predictive power of EUI on Bitcoin volatility. Firstly, in-
corporating EUI into the GM model markedly improves its ability to explain Bitcoin volatility, demonstrating 
varying levels of effectiveness across different countries. Notably, EUI's influence on Bitcoin volatility is par-
ticularly significant when considering approximately 12 lags, indicating a delayed but pronounced impact. 
Secondly, while there is no evident leverage effect in Bitcoin returns, EUI exhibits an asymmetric impact on 
volatility. This means that the effects of positive and negative shocks are not equally distributed, highlighting 
the nuanced and complex role that EUI plays in volatility modeling. This asymmetry underscores the im-
portance of including EUI in such models to capture the intricate dynamics of Bitcoin volatility more accurate-
ly. These findings suggest that EUI is a crucial variable for explaining the modeled volatility of Bitcoin. 

However, our paper acknowledges certain limitations. First, constraints related to the availability of the 
EUI data prevented us from capturing the most recent situation to accurately reflect the current state of affairs. 
Additionally, variations in the sample periods could lead to different outcomes. Second, this study solely uti-
lized GARCH-based models, which may not fully capture the non-linear relationships present in real-world 
data (Xu et al., 2024; Yu et al., 2024a). Future research should employ a broader range of methodologies to val-
idate and expand upon our findings. 

Looking ahead, there is substantial opportunity for both academic and practical advancements in study-
ing low-frequency uncertainty indices. Specifically, the EUI deserves detailed investigation for its potential 
impact on a wide array of cryptocurrencies and digital assets. As index providers continue to expand their 
offerings, exploring these new indices is both timely and potentially groundbreaking. Additionally, while 
GARCH-based models are traditionally favored for volatility analysis, they have well-recognized limitations. 
Integrating cutting-edge technologies like deep learning and artificial intelligence into these models could 
significantly improve their robustness, precision, and accuracy (Kwok et al., 2024; Mehta et al., 2023). Such 
advancements promise to enhance financial analysis tools, aiding decision-making in an increasingly complex 
market environment. 
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