
ABSTRACT

Preeclampsia is a complex pregnancy complication characterized by high blood pressure and

signs of damage to another organ system, most often the liver and kidneys. It typically occurs

after 20 weeks of pregnancy and can lead to serious, even fatal, complications for both mother

and baby if left unmanaged. Early prediction and intervention are crucial to managing the risks

associated with preeclampsia. This Project explores the development and application of machine

learning (ML) models to predict the likelihood of preeclampsia in pregnant women. Utilizing a

dataset comprised of medical records, including demographic information, medical histories, and

laboratory test results, we trained and evaluated several ML algorithms to identify those at high

risk for developing preeclampsia. The project compares the performance of various models,

including logistic regression, support vector machines, random forests, in terms of accuracy,

sensitivity, and specificity. The best-performing model offers a promising tool for healthcare

providers to enhance antenatal care by identifying high-risk patients early in their pregnancy,

thereby enabling timely and targeted interventions. This research not only contributes to the field

of medical informatics by advancing the predictive capabilities of ML in antenatal care but also

demonstrates the potential for ML to improve outcomes in preeclampsia and other

pregnancy-related complications.

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study
Preeclampsia is a complicated condition related to high blood pressure that impacts around

5-10% of all pregnancies. It is identified by elevated blood pressure and frequently a

considerable presence of protein in the urine, typically emerging after the 20th week of

pregnancy. It's vital to detect and manage it early to avoid serious risks, including death of the

mother and baby. Nonetheless, forecasting preeclampsia, especially in its initial phases, is

notably difficult because of its complex causes and the diverse ways it can manifest.

1.2 Problem Statement
Despite advancements in obstetric care, the early prediction of preeclampsia continues to pose a

challenge. Current models and tests lack the sensitivity and specificity required to accurately

identify women at risk during the early stages of pregnancy. This limitation leads to missed

diagnoses, delayed interventions, and increased risk of adverse outcomes. There is a critical need

for a predictive model that can effectively utilize clinical, biochemical, and biophysical markers

to identify pregnant women at high risk for early preeclampsia.

1.3 Aims and Objectives
Develop a Predictive Model: To create a model that leverages advanced statistical and machine

learning techniques to predict early preeclampsia with high accuracy.

Identify Key Predictors: To analyze a wide range of potential predictors, including demographic,

clinical, genetic, and environmental factors, to understand their contribution to the risk of

developing early preeclampsia.

Assess Effectiveness in Clinical Settings: To evaluate the predictive model's performance

through prospective studies in diverse populations to ensure its effectiveness and applicability in

real-world clinical settings.

1.4 Significance of the Study
The development of an accurate predictive model for early preeclampsia has the potential to

significantly impact maternal and neonatal health outcomes. By enabling early identification and

intervention, this study aims to reduce the incidence of severe preeclampsia and its associated

complications. Additionally, it contributes valuable insights to the field of obstetrics, supporting

the development of guidelines and policies to improve pregnancy care. Ultimately, this research

could lead to better resource allocation, more personalized care, and improved health outcomes

for mothers and their babies.

1.5 Scope of the Study
Population and Demographics: The study focuses on pregnant women across various

demographics, including age, BMI, and ethnicity, to ensure diverse representation. It will

particularly concentrate on those in the first and second trimesters, as the aim is to predict early

preeclampsia.

Predictive Factors Analyzed: A wide range of factors will be considered, including genetic

markers, blood pressure measurements, blood and urine biochemistry, and ultrasonography data.

The study aims to integrate these factors into a comprehensive predictive model.

Technological Framework: Advanced statistical models and machine learning algorithms, such

as logistic regression, random forests, and neural networks, will be employed to analyze the data

and develop the prediction model.

Geographical Coverage: The study will be conducted in several healthcare facilities, including

both urban and rural settings, to ensure the model's applicability across different healthcare

systems and settings.

1.6 Limitations of the Study
Data Availability and Quality: The accuracy of the predictive model is highly dependent on the

availability and quality of the data collected. Limitations in data collection, such as number of

data collected, values or inaccuracies in self-reported information, may impact the study's

outcomes.

Generalizability:While the study aims to include a diverse population, the findings may not be

fully generalizable to all pregnant women worldwide due to differences in genetic,

environmental, and healthcare factors.

Predictive Model Constraints: The complexity of preeclampsia as a disease means that even

with advanced modeling techniques, the prediction model may not achieve perfect accuracy. The

interplay of numerous factors contributing to preeclampsia can limit the model's predictive

capability.

Ethical and Privacy Considerations: Ensuring the privacy and ethical treatment of participants'

data is paramount. The study's scope is constrained by the need to comply with ethical standards

and data protection regulations, which may limit the extent and depth of data analysis.

Resource and Time Constraints: The study's scope is subject to the availability of financial,

technological, and human resources. Additionally, the time frame for the study may not allow for

the longitudinal analysis of predictors over an extended period.

CHAPTER TWO

LITERATURE REVIEW

Preeclampsia, also referred to as toxemia is a condition unique to pregnancy. It impacts 3-5% of

expectant mothers and is identified by the presence of swelling, hypertension, and protein in the

urine. Preeclampsia increases a woman's risk of developing cardiovascular diseases later in life,

it can also lead to the dysfunction of multiple organs like the kidneys and liver and can restrict

fetal growth. Without appropriate management, it can have fatal consequences and is a

significant cause of maternal and neonatal mortality in underprivileged areas. This health issue is

a leading contributor to the high rates of death among mothers and newborns in economically

disadvantaged regions. Currently, in severe cases, the only management strategy involves

stabilizing the condition of the mother and the unborn child, followed by strategically timing the

delivery to benefit both (Filipek A, Jurewicz, 2018). Annually, over half a million women

succumb to pregnancy-related complications, with 10% experiencing hypertension and 2% to 8%

facing preeclampsia, which can lead to serious health issues, including organ damage and

clotting disorders, and adversely affect the baby's growth and timing of birth. (Duley L., 2009).

Preeclampsia notably increases the likelihood of complications throughout pregnancy. If left

untreated or in severe form, maternal pulmonary edema, eclampsia, brain injury, and death can

occur. It is estimated that preeclampsia accounts for 10% of all global maternal deaths related to

pregnancy.(Shamsi U et al..2013).Predicting preeclampsia is complex, Nonetheless, statistical

learning techniques are capable of sifting through various data forms, including patient medical

records and laboratory findings, to pinpoint the most pertinent details for forecasting.(Marić I,

Tsur et al.. 2020)

2.1 Related Works:
Machine Learning (ML) is essential for enabling a model to learn from and adapt to input data

autonomously, without needing direct programming. This technology endows machines with the

ability to comprehend data, identify patterns, and subsequently make predictions or

decisions(Kumar N, Aggarwal D. 2021). A predictive model has been crafted, based on Bayes'

theorem, which assesses the likelihood of developing preeclampsia necessitating delivery within

certain timeframes after 30–33 weeks of pregnancy. This model incorporates maternal traits and

medical history, as well as biophysical and biochemical indicators. Early findings corroborate

that the inherent risk for preeclampsia is influenced by maternal characteristics and escalates

with older maternal age, higher body weight, and among women of Afro-Caribbean and South

Asian descent. The likelihood of developing preeclampsia is greater in individuals who have a

personal or family history of the condition. It's also higher in women who already have health

issues like ongoing high blood pressure, diabetes, or autoimmune diseases such as systemic

lupus erythematosus or antiphospholipid syndrome.(Tayyar A et al.. 2014).

CHAPTER THREE

METHODOLOGY

3.1 Design and Implementation
This project evaluates classification supervised Machine Learning model by visualizing the

model’s results in a single interface website built using Flask. The website's inputs are the model

and the attributes for both testing and training sets. The output is the UI which contains the

prediction on whether the patient has preeclampsia or not. More so, the figure below depicts the

methodology adopted for this study. Importing datasets is the most important and foremost step

before starting the analysis and model development. Machine Learning classifiers are proposed

in this study for predictive analysis. We used a sample dataset from the electronic health records

of Murtala Muhammad Specialist hospital in Northern Nigeria. The dataset is used to test and

train on Random Forest and Gradient Boosting classifier algorithms, where RF was used as the

final. Also, data preprocessing is used for cleansing and reduction of data, which also deals with

missing values to improve accuracy. Before displaying the dataset, the streamed data undergoes

preprocessing for direct visualization and analysis.

Fig 3.1 Project Lifecycle

3.2 Data Preprocessing

Data Collection:

Data collection is a fundamental aspect of machine learning, providing the essential raw

materials required for training models. These models leverage the collected data to discern

patterns, relationships, and ultimately, to make informed predictions. A thorough initial review of

data sources is crucial to determine the feasibility and direction of further predictive modeling

efforts. his dataset is derived from the Murtala Muhammad Specialist Hospital, a prominent

healthcare institution in Northern Nigeria. It encompasses data from approximately 235 patients,

distributed across 12 distinctive features, offering a comprehensive insight into the hospital's

operational and patient care dynamics.To facilitate the prediction of pre-eclampsia, the initial

step involves a meticulous examination of the dataset provided. This process begins with loading

the data, followed by a detailed inspection of its structure and the types of variables it

encompasses. Such an examination is pivotal for identifying the requisite preprocessing and

analytical methodologies to be employed as shown below:

Fig 3.2.1 Uploading and reading datasets

Initial Data Inspection and Features Overview:

The dataset's rich composition of clinical and demographic features sets the stage for an in-depth

analysis aimed at predicting pre-eclampsia. However, the identified preprocessing challenges,

such as data cleanliness and feature clarification, underscore the need for meticulous data

management to ensure the integrity of the subsequent analytical processes.

Features Overview:

● Age: Represents the patient's age, a fundamental demographic variable.

● Urinalysis: Documents the outcomes of urinalysis tests, crucial for detecting various

conditions.

● Pcv (Packed Cell Volume):Measures the proportion of blood volume that is occupied

by red blood cells, indicating hematocrit levels.

● Gestational Age: Specifies the age of the pregnancy, measured in weeks, vital for

understanding pregnancy progression.

● Blood Group (BG): Identifies the patient's blood type, important for transfusions and

pregnancy-related compatibility issues.

● HCV (Hepatitis C Virus): Reflects the results of the Hepatitis C virus test.

● RVS: Denotes results from a medical test, requiring further clarification on the acronym's

meaning.

● PR(bm): Potentially indicates pulse rate; however, further clarification is needed to

confirm its precise definition.

● History of Eclampsia in Family: Signifies whether there is a familial history of

eclampsia, a critical risk factor.

● HBV (Hepatitis B Virus): Shows the results of the Hepatitis B virus test.

● HBSAG (Hepatitis B Surface Antigen): Indicates the presence of the Hepatitis B

surface antigen, a key marker for infection.

● Pre-Eclampsia (Yes/No): The primary target variable, denoting the presence or absence

of pre-eclampsia in the patient.

● Systolic & Systolic_bp: Highlighted as a potentially duplicate field, suggesting a

typographical error and necessitating clarification.

● Diastolic_bp: Records the diastolic blood pressure, essential for monitoring

cardiovascular health.

Cleaning the Data:

Handling Missing Data: Missing values were notably present across various columns like

'Urinalysis', 'Blood Group(BG)', 'HCV', 'RVS', 'PR(bm)', 'History of eclampsia in family', 'HBV',

'HBSAG', and 'systolic Decisions were made to either impute or drop these columns based on the

missing data's extent.

● Data Types Correction: Data types were adjusted to ensure numerical and categorical

data were correctly classified, facilitating subsequent analysis.

● Duplicate Columns: A duplicate column analysis led to the removal of redundancies,

streamlining the dataset for modeling.

● Categorical Data Encoding: Categorical variables underwent encoding to transform

them into a format suitable for machine learning algorithms.

Fig 3.2.3 Dtaa type classification and column analysis

Fig 3.2.4 label Encoding

3.3 Exploratory Data Analysis (EDA)

Embarking on an exploratory data analysis (EDA) is pivotal for uncovering the intricate

relationships and patterns embedded within our dataset, with a particular focus on identifying

variables that significantly influence the prediction of pre-eclampsia. This endeavor will

encompass a thorough examination of the distribution of individual variables, alongside an

exploration of their correlations and potential interactions with the target variable,

'Pre-Eclampsia (Yes/No)'.

Our analysis will unfold in stages, beginning with basic descriptive statistics to establish a

foundational understanding of the dataset's characteristics. Subsequently, Delved into

examination of distributions and correlations, before culminating in the visualization of key

relationships that emerge from our investigation.

Fig 3.2.5 Variables Correlation matrix

Insights from the Exploratory Data Analysis

Descriptive Statistics

Our analysis spans a diverse range of patient ages and gestational ages, encapsulating a broad

spectrum of pregnancy stages.The average systolic and diastolic blood pressures within the

dataset stand at 139.85 mmHg and 90.77 mmHg, respectively, indicating a varied range of blood

pressure readings among the participants.

Correlation Analysis: A pronounced positive correlation is observed with

History_of_eclampsia_in_family, systolic_bp, and diastolic_bp in relation to the incidence of

pre-eclampsia, underscoring their potential as significant predictors.Urinalysis results also

exhibit a noteworthy positive correlation with pre-eclampsia occurrences, further highlighting its

predictive value. In contrast, Age and Gestational_Age are inversely correlated with

pre-eclampsia, suggesting a decrease in likelihood with advancing age and gestation period.

PRbm's negative correlation implies that an increase in PRbm is associated with a reduced risk of

pre-eclampsia.

Visual Analysis: The analysis is complemented by a heatmap visualization, which elucidates the

strength and direction of the relationships between variables, providing a visual representation of

their interconnectedness.

Key Observations

Notably, a family history of eclampsia, blood pressure readings, and urinalysis outcomes emerge

as critical factors for pre-eclampsia prediction. Conversely, variables such as age and gestational

age may influence the risk of pre-eclampsia in the opposite direction, meriting further

investigation. The 'PRbm' column, characterized by its negative correlation with the target

variable and the presence of missing data, presents a unique challenge in our predictive modeling

efforts. To address this, a thoughtful approach towards imputing the missing values is warranted,

ensuring that we retain this potentially valuable predictor in our model. In light of the numeric

nature of the 'PRbm' data, we propose employing a common yet effective imputation technique

tailored to quantitative data. The essence of this technique involves substituting missing values

with a measure of central tendency—specifically, the median or the mean of the column. The

decision to use the median or mean hinges on the data's distribution:

For skewed data: The median is preferred as it provides a more robust measure of central

tendency, less influenced by outliers.

For symmetric data distributions: The mean serves as an appropriate choice, accurately reflecting

the central point of the data.

The imputation strategy is grounded in the principle of maintaining the statistical integrity of the

'PRbm' column, while minimizing the impact of missing data on our predictive model. The

implementation of this imputation will involve a preliminary analysis of the 'PRbm' distribution

to ascertain its skewness, followed by the application of the selected measure of central tendency.

This process not only enhances the completeness of our dataset but also bolsters the reliability of

our subsequent analyses.

Fig 3.2.6 Distribution of PRbm variable.

The distribution of 'PRbm' demonstrates a modest left-skew, as evidenced by a skewness

coefficient of approximately -0.65. In scenarios characterized by such skewness, employing the

median for imputation purposes is deemed more methodologically sound. This is attributed to the

median's resilience to distortions caused by skewness and outliers.

We proceeded to remediate the missing values within the 'PRbm' dataset by utilizing its median

value for imputation. This intervention will render the dataset complete, thereby facilitating the

foundational work necessary for the development of a predictive model.

Upon successful imputation of all missing values, we have achieved a fully constituted dataset.

This meticulously cleaned and preprocessed dataset primes us for the next phase of constructing

a predictive model specifically designed for the anticipation of pre-eclampsia outcomes.

Fig 3.2.6 Cleaned dataset

3.4 Model Building

The dataset has been divided into training and testing subsets, with feature scaling uniformly

applied to ensure consistency across the data. The training set comprises 162 observations, while

the testing set contains 70 observations, each featuring 12 distinct variables.

Machine Learning Algorithms:

Here's a brief overview of the machine Learning models evaluated and the performance metrics

of each:

Logistic Regression:A statistical method that models the probability of a binary outcome based

on one or more predictor variables. It's widely used for binary classification problems (e.g., spam

or not spam).

Random Forest:An ensemble learning method that operates by constructing a multitude of

decision trees at training time and outputting the class that is the mode of the classes

(classification) of the individual trees. It's known for its high accuracy, robustness, and ability to

handle large data sets with higher dimensionality.

Support Vector Machine (SVM):A powerful and versatile supervised learning algorithm used for

both classification and regression. It works by finding the hyperplane that best separates different

classes in the feature space, maximizing the margin between the classes' closest points (support

vectors).

K-Nearest Neighbors (KNN):A simple, instance-based learning algorithm where the class of a

sample is determined by the majority class among its k nearest neighbors.

Gradient Boosting Classifier:An ensemble technique that builds models in a stage-wise fashion

and generalizes them by allowing optimization of an arbitrary differentiable loss function. It

builds an additive model in a forward stage-wise fashion; it allows for the optimization of

arbitrary differentiable loss functions and is typically used for its predictive accuracy.

Logistic
Regression

Random
forest

SVM KNN Gradient
Boosting
classifier

Accuracy 58.57% 71.4% 65.71% 62.86% 68.57%

Precision 40.00% 59.09% 50.00% 45.83% 53.85%

Recall 41.67% 54.17% 29.17% 45.83% 58.33%

ROC AUC 54.53% 67.30% 56.97% 58.79% 66.12%
Fig 3.4.1 Results of different Different

Upon analysis, the data reveals that the Random Forest model surpasses its counterparts in terms
of accuracy, precision, and ROC AUC scores, highlighting its superior capacity to predict
pre-eclampsia within the dataset under review.

The Gradient Boosting Classifier has the highest Recall scores among all evaluated models. This
measures the proportion of actual positives that were correctly identified by the model.marking it
as a strong performer in the predictive modeling arena.

In contrast, the Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) models exhibit
lower levels of accuracy and ROC AUC scores. This comparative underperformance suggests

that, relative to the Gradient Boosting and Random Forest models, they are less effective in
accurately predicting pre-eclampsia within the dataset.

Considering the evidence, the Gradient Boosting Classifier and Random Forest models are
identified as the most effective for predicting pre-eclampsia. To further enhance their
performance and reliability, it is recommended to fine-tune these models and apply
cross-validation techniques.

Fine Tuning and evaluation

The process of finding the best hyperparameters for a machine learning model is called

Hyperparameter tuning. There are different methods for finding the best hyperparameters for

your models. We adopted a grid search methodology to meticulously fine-tune the

hyperparameters of both the Gradient Boosting and Random Forest models. This systematic

approach was aimed at discovering the optimal combination of parameters that would enhance

the performance of the models. Following the optimization, we observed significant

improvements in the performance metrics of both models. Specifically, the Gradient Boosting

Classifier achieved a well-balanced performance across its indicators, while the Random Forest

Model showcased exceptional accuracy and precision, underscoring its predictive robustness.

For a comprehensive evaluation, we rigorously assessed the performance of these optimized

models on a designated test set. This assessment was conducted using uniform metrics to

facilitate a fair and accurate comparison between the models. The comparative analysis revealed

that the Random Forest model excelled in terms of accuracy and precision, demonstrating its

efficacy in accurately predicting outcomes and minimizing false positives. On the other hand, the

Gradient Boosting Classifier showed superior performance in recall and ROC AUC metrics,

indicating its strong ability to identify positive instances and its overall discriminative power.

This thorough evaluation highlighted the distinct strengths of each model, providing valuable

insights that will inform our strategic decision-making in selecting the most suitable model. Our

decision will be based on the specific requirements of our predictive tasks, ensuring that we

leverage the unique advantages of each model to achieve the best possible outcomes.

Fig 3.4.2 Results of different Different

Random Forest Gradient Boosting Classifier

Learning rate 0.1

Max Depth 5 4

Number of Estimators 200 200

Accuracy 72.92% 74.77%
Fig 3.4.3 Tuning the models using The simplified grid search

Gradient Boosting Classifier Random Forest

Accuracy 70.00% 71.43%

Precision 56.00% 61.11%

Recall 58.33% 45.83%

ROC AUC 67.21% 65.31%
Fig 3.4.4 performance metrics for the tuned Gradient Boosting Classifier and Random Forest on test Sets

CHAPTER FIVE

RESULT ANALYSIS

Various models were trained and evaluated, including Logistic Regression, Random Forest,

Support Vector Machine, K-Nearest Neighbors, and Gradient Boosting Classifier. The Random

Forest model demonstrated superior performance with an accuracy of 71.4%, precision of

59.09%, and an ROC AUC score of 67.30%. After tuning, the models showed improved metrics,

with the Random Forest model achieving an accuracy of 71.43% and precision of 61.11%. The

findings indicate that the Random Forest model is particularly effective in predicting

pre-eclampsia, suggesting its potential utility in healthcare settings for early identification and

management of the condition. However, it is suggesting that there is a possibility of missing

some true preeclampsia cases. It is evident that further investigative efforts and refinements in

these models could significantly enhance their predictive accuracy and reliability to be clinically

relevant.

As illustrated in the figure below, the web App user interface allows variables inputs to predict

pre-eclampsia. For now the users will input 0 for “No” and 1 for “Yes” This data exploration

enables patients to insert the data such as Age, Gestational Age, systolic and Diastolic bp etc.

Additionally,The result of the prediction will show by the right side of the form.

Fig4.1 User Interface

CHAPTER FIVE

SUMMARY CONCULSION AND RECOMMENDATION

Conclusion

Our comprehensive analysis underscores the potential of machine learning algorithms,

specifically the Random Forest in accurately predicting pre-eclampsia. It exhibits higher

precision, implying that the positive predictions are more likely to accurately identify cases of

pre-eclampsia. This research underscores the value of machine learning in enhancing diagnostic

processes and highlights the potential for further exploration and integration of such models in

medical practice to improve patient outcomes.

Recommendation

Enhanced Data Collection: Initiating more comprehensive data collection efforts is crucial for

mitigating issues related to missing data, thereby improving the robustness and training efficacy

of our models.

Ongoing Model Optimization: We advocate for the continuous refinement and validation of these

models against larger and more varied datasets to refine their predictive capabilities.

Clinical Application Assessment: It is imperative to evaluate the practicality and effectiveness of

integrating these predictive models within clinical workflows, aiming to augment

decision-making processes in healthcare settings.

Acknowledged Limitations:

Data Integrity Concerns: The presence of a significant rate of missing data could potentially

compromise the accuracy of our predictive models, highlighting the need for improved data

collection and processing methodologies.

Applicability Across Populations: There is a necessity to validate these models across a diverse

range of demographic groups to confirm their generalizability and ensure their broad

applicability in different clinical environments.

This report encapsulates the findings of our analysis, offering a roadmap towards leveraging

advanced machine learning techniques for the prediction of pre-eclampsia. By addressing the

outlined recommendations and limitations, we can further our commitment to advancing

healthcare outcomes through the integration of technology in medical diagnostics.

REFERENCE

1. Filipek A, Jurewicz E. PMID: 30656917 DOI: 10.18388/pb.2018_146. 2018. PubMed.

2. Duley L. The global impact of pre-eclampsia and eclampsia. Seminars in Perinatology.

2009;33(3):130–137.https://www.sciencedirect.com/science/article/abs/pii/S0146000509

000214?via%3Dihub

3. Shamsi U, Saleem S, Nishter N. Epidemiology and risk factors of preeclampsia: an

overview of observational studies. Al Ameen J Med Sci. 2013;6:292-300.

4. Marić I, Tsur A, Aghaeepour N, Montanari A, Stevenson DK, Shaw GM, Winn VD.

Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol MFM.

2020;2(2):100100. Epub 2020 Mar 14. PMID: 33345966.

https://pubmed.ncbi.nlm.nih.gov/33345966/

5. Kumar N, Aggarwal D. Learning-Based Focused Web Crawler. IETE J. Res.

2021;67:1–9.

https://scholar.google.com/scholar_lookup?title=LEARNING-Based+Focused+WEB+Cr

awler&author=Kumar,+N.&author=Aggarwal,+D.&publication_year=2021&journal=IE

TE+J.+Res.&volume=67&pages=1%E2%80%939&doi=10.1080/03772063.2021.188531

2

6. Tayyar A, Garcia-Tizon Larroca S, Poon LC, Wright D, Nicolaides KH. Competing risks

model in screening for preeclampsia by mean arterial pressure and uterine artery

pulsatility index at 30–33 weeks’ gestation. Fetal Diagnosis and Therapy.

2014;36(1):18–27. https://pubmed.ncbi.nlm.nih.gov/24970282/

https://pubmed.ncbi.nlm.nih.gov/30656917/
https://www.sciencedirect.com/science/article/abs/pii/S0146000509000214?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0146000509000214?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/33345966/
https://scholar.google.com/scholar_lookup?title=LEARNING-Based+Focused+WEB+Crawler&author=Kumar,+N.&author=Aggarwal,+D.&publication_year=2021&journal=IETE+J.+Res.&volume=67&pages=1%E2%80%939&doi=10.1080/03772063.2021.1885312
https://scholar.google.com/scholar_lookup?title=LEARNING-Based+Focused+WEB+Crawler&author=Kumar,+N.&author=Aggarwal,+D.&publication_year=2021&journal=IETE+J.+Res.&volume=67&pages=1%E2%80%939&doi=10.1080/03772063.2021.1885312
https://scholar.google.com/scholar_lookup?title=LEARNING-Based+Focused+WEB+Crawler&author=Kumar,+N.&author=Aggarwal,+D.&publication_year=2021&journal=IETE+J.+Res.&volume=67&pages=1%E2%80%939&doi=10.1080/03772063.2021.1885312
https://scholar.google.com/scholar_lookup?title=LEARNING-Based+Focused+WEB+Crawler&author=Kumar,+N.&author=Aggarwal,+D.&publication_year=2021&journal=IETE+J.+Res.&volume=67&pages=1%E2%80%939&doi=10.1080/03772063.2021.1885312
https://pubmed.ncbi.nlm.nih.gov/24970282/

APPENDIX
The full code can be accessed in this Github

1. Pre-eclampsia.ipnyb (file)
Import pandas as pd
import numpy as np

df = pd.read_csv("/content/Pre-eclampsia - Sheet1.csv")
df.head()

Data Cleaning and Preprocessing

Replacing '-' with NaN for better handling of missing data
df.replace("-",np.NaN, inplace = True)

Extract systolic and diastolic blood pressure values
df[['systolic_bp', 'diastolic_bp']] = df['Bp(mmhg)'].str.split('/', expand=True)
df.drop(columns=['Bp(mmhg)','diastolic'], inplace=True)

Convert numerical columns to appropriate data types
df['systolic_bp'] = pd.to_numeric(df['systolic_bp'], errors='coerce')
df['diastolic_bp'] = pd.to_numeric(df['diastolic_bp'], errors='coerce')

chnage the pcs column to string
df['Pcv'] = df['Pcv'].astype(str)
df['Pcv'] = df['Pcv'].str.rstrip("%").astype('float') / 100.0 # Convert to fraction
df['Gestational Age'] = df['Gestational Age'].astype(str)
df['Gestational Age'] = df['Gestational Age'].str.rstrip('weeks').astype('float')

Convert categorical columns to appropriate data types
categorical_columns = ['Urinalysis', 'Blood Group(BG)', 'HCV', 'RVS', 'HBV', 'HBSAG',
'Pre-Eclampsia(yes/no)']
df[categorical_columns] = df[categorical_columns].astype('category')

Display the cleaned dataset
df.head()

https://github.com/Amoora/Pre-eclampsia
https://colab.research.google.com/drive/1GzUNqhx2FiFnK2uwWE_J9MjkFgTxfez3#scrollTo=xvTeo7bYh3Vo

Data Cleaning Process

Checking for duplicate columns and any irrelevant columns
print("Column names:", df.columns)

Checking for the number of missing values in each column
missing_values = df.isnull().sum()

Checking data types of each column
data_types = df.dtypes

missing_values, data_types

Simplifying column names
df.columns = df.columns.str.strip().str.replace(' ', '_').str.replace('(', '').str.replace(')', '')

Dropping the 'systolic' column if it's a duplicate of 'systolic_bp'
if 'systolic' in df.columns and 'systolic_bp' in df.columns:
if df['systolic'].equals(df['systolic_bp']):
df.drop('systolic', axis=1, inplace=True)

else:
If they are not duplicates, we need to decide what to do with these columns
print("systolic and systolic_bp are not duplicates. Further inspection needed.")

Dealing with missing values
We'll first check the percentage of missing values in each column to decide on the approach
missing_percentage = df.isnull().sum() / len(df) * 100

missing_percentage

Dropping columns with a high percentage of missing values or irrelevance
columns_to_drop = ['HBV', 'systolic']
df.drop(columns=columns_to_drop, inplace=True)

Deciding on a strategy for other columns with missing data
For columns with a moderate amount of missing data, we'll use imputation
For columns with a high percentage of missing data, we'll evaluate their importance

Imputing missing values for 'Pcv' and 'Gestational_Age' with their median values
df['Pcv'].fillna(df['Pcv'].median(), inplace=True)
df['Gestational_Age'].fillna(df['Gestational_Age'].median(), inplace=True)

Imputing missing values for blood pressure with median values
df['systolic_bp'].fillna(df['systolic_bp'].median(), inplace=True)
df['diastolic_bp'].fillna(df['diastolic_bp'].median(), inplace=True)

Checking the updated dataset
updated_missing_percentage = df.isnull().sum() / len(df) * 100
updated_missing_percentage, df.head()

from sklearn.preprocessing import LabelEncoder
import pandas as pd

Creating a label encoder object
le = LabelEncoder()

Encoding categorical variables
categorical_columns = ['Urinalysis', 'Blood_GroupBG', 'HCV', 'RVS',
'History_of_emclapsia_in_family', 'HBSAG', 'Pre-Eclampsiayes/no']
for col in categorical_columns:
if col in df.columns:
Convert to 'category' dtype and include 'Missing' in categories if not already included
if df[col].dtype != 'category':
df[col] = df[col].astype('category')

if 'Missing' not in df[col].cat.categories:

df[col] = df[col].cat.add_categories('Missing')

Fill missing values with 'Missing'
df[col].fillna('Missing', inplace=True)

Encode the categorical data
df[col] = le.fit_transform(df[col])

Checking the dataset after encoding
encoded_data = df
encoded_data.head()

import matplotlib.pyplot as plt
import seaborn as sns

Basic Descriptive Statistics
descriptive_stats = encoded_data.describe()

Correlation Matrix
correlation_matrix = encoded_data.corr()

Plotting the Correlation Heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=2)
plt.title("Correlation Matrix")
plt.show()

descriptive_stats, correlation_matrix['Pre-Eclampsiayes/no'].sort_values(ascending=False)

Visualizing the distribution of 'PRbm'
plt.figure(figsize=(8, 6))
sns.histplot(encoded_data['PRbm'].dropna(), kde=True)
plt.title("Distribution of PRbm")
plt.xlabel("PRbm")
plt.ylabel("Frequency")
plt.show()

Checking skewness
prbm_skewness = encoded_data['PRbm'].skew()
prbm_skewness

Imputing missing values in 'PRbm' with its median value
prbm_median = encoded_data['PRbm'].median()
encoded_data['PRbm'].fillna(prbm_median, inplace=True)

Checking if there are any more missing values in the dataset
remaining_missing_values = encoded_data.isnull().sum().sum()
remaining_missing_values

0

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

Defining the features and target variable
X = encoded_data.drop('Pre-Eclampsiayes/no', axis=1)
y = encoded_data['Pre-Eclampsiayes/no']

Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Feature Scaling
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

X_train_scaled.shape, X_test_scaled.shape, y_train.shape, y_test.shape

((162, 12), (70, 12), (162,), (70,))

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score,
confusion_matrix

Building the Logistic Regression model
log_reg = LogisticRegression()
log_reg.fit(X_train_scaled, y_train)

Making predictions on the test set
y_pred_log_reg = log_reg.predict(X_test_scaled)

Evaluating the Logistic Regression model
accuracy_log_reg = accuracy_score(y_test, y_pred_log_reg)
precision_log_reg = precision_score(y_test, y_pred_log_reg)
recall_log_reg = recall_score(y_test, y_pred_log_reg)
roc_auc_log_reg = roc_auc_score(y_test, y_pred_log_reg)
conf_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)

Logistic Regression performance metrics
log_reg_metrics = {
"Accuracy": accuracy_log_reg,
"Precision": precision_log_reg,
"Recall": recall_log_reg,
"ROC AUC": roc_auc_log_reg

}

log_reg_metrics, conf_matrix_log_reg

({'Accuracy': 0.5857142857142857,

'Precision': 0.4,

'Recall': 0.4166666666666667,

'ROC AUC': 0.5452898550724637},

array([[31, 15],

[14, 10]]))

from sklearn.ensemble import RandomForestClassifier

Building the Random Forest model
rf = RandomForestClassifier(random_state=42)
rf.fit(X_train_scaled, y_train)

Making predictions on the test set
y_pred_rf = rf.predict(X_test_scaled)

Evaluating the Random Forest model
accuracy_rf = accuracy_score(y_test, y_pred_rf)
precision_rf = precision_score(y_test, y_pred_rf)
recall_rf = recall_score(y_test, y_pred_rf)
roc_auc_rf = roc_auc_score(y_test, y_pred_rf)
conf_matrix_rf = confusion_matrix(y_test, y_pred_rf)

Random Forest performance metrics
rf_metrics = {
"Accuracy": accuracy_rf,
"Precision": precision_rf,
"Recall": recall_rf,
"ROC AUC": roc_auc_rf

}

rf_metrics, conf_matrix_rf

({'Accuracy': 0.7142857142857143,

'Precision': 0.5909090909090909,

'Recall': 0.5416666666666666,

'ROC AUC': 0.6730072463768115},

array([[37, 9],

[11, 13]]))

plt.figure(figsize=(10,7))
sns.heatmap(conf_matrix_rf, annot=True, fmt="d", cmap="Blues", xticklabels=['Predicted 0',
'Predicted 1', 'Predicted 2'], yticklabels=['True 0', 'True 1', 'True 2'])
plt.ylabel('Actual Label')
plt.xlabel('Predicted Label')
plt.title('Confusion Matrix Visualization')
plt.show()

from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier

Create a Gradient Boosting classifier instance
clf = GradientBoostingClassifier()

Now, you can use `clf` to fit data and make predictions
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)

Support Vector Machine Model
svm_model = SVC()
svm_model.fit(X_train_scaled, y_train)
y_pred_svm = svm_model.predict(X_test_scaled)

Gradient Boosting Classifier Model

gb_model = GradientBoostingClassifier(random_state=42)
gb_model.fit(X_train_scaled, y_train)
y_pred_gb = gb_model.predict(X_test_scaled)

K-Nearest Neighbors Model
knn_model = KNeighborsClassifier()
knn_model.fit(X_train_scaled, y_train)
y_pred_knn = knn_model.predict(X_test_scaled)

Evaluating the models
models = [svm_model, gb_model, knn_model]
predictions = [y_pred_svm, y_pred_gb, y_pred_knn]
model_names = ['SVM', 'Gradient Boosting', 'K-Nearest Neighbors']
model_performance = {}

for i, model in enumerate(models):
accuracy = accuracy_score(y_test, predictions[i])
precision = precision_score(y_test, predictions[i])
recall = recall_score(y_test, predictions[i])
roc_auc = roc_auc_score(y_test, predictions[i])
model_performance[model_names[i]] = {"Accuracy": accuracy, "Precision": precision, "Recall":

recall, "ROC AUC": roc_auc}

model_performance

{'SVM': {'Accuracy': 0.6571428571428571,

'Precision': 0.5,

'Recall': 0.2916666666666667,

'ROC AUC': 0.5697463768115942},

'Gradient Boosting': {'Accuracy': 0.6857142857142857,

'Precision': 0.5384615384615384,

'Recall': 0.5833333333333334,

'ROC AUC': 0.6612318840579711},

'K-Nearest Neighbors': {'Accuracy': 0.6285714285714286,

'Precision': 0.4583333333333333,

'Recall': 0.4583333333333333,

'ROC AUC': 0.5878623188405797}}

from sklearn.model_selection import GridSearchCV

Simplified parameter grid for Gradient Boosting Classifier
param_grid_gb_simplified = {
'n_estimators': [100, 200],
'learning_rate': [0.05, 0.1],
'max_depth': [3, 4]

}

Creating the simplified Grid Search for Gradient Boosting
gb_grid_search_simplified = GridSearchCV(GradientBoostingClassifier(random_state=42),
param_grid_gb_simplified, cv=5, scoring='accuracy')
gb_grid_search_simplified.fit(X_train_scaled, y_train)

Best parameters and best score for Gradient Boosting
best_params_gb_simplified = gb_grid_search_simplified.best_params_
best_score_gb_simplified = gb_grid_search_simplified.best_score_

best_params_gb_simplified, best_score_gb_simplified

({'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200},

0.7477272727272728)

Simplified parameter grid for Random Forest
param_grid_rf_simplified = {
'n_estimators': [100, 200],
'max_depth': [3, 5],
'min_samples_split': [2, 4]

}

Creating the simplified Grid Search for Random Forest
rf_grid_search_simplified = GridSearchCV(RandomForestClassifier(random_state=42),
param_grid_rf_simplified, cv=5, scoring='accuracy')
rf_grid_search_simplified.fit(X_train_scaled, y_train)

Best parameters and best score for Random Forest

best_params_rf_simplified = rf_grid_search_simplified.best_params_
best_score_rf_simplified = rf_grid_search_simplified.best_score_

best_params_rf_simplified, best_score_rf_simplified

({'max_depth': 5, 'min_samples_split': 2, 'n_estimators': 200},

0.7291666666666667)

Creating and evaluating the tuned Gradient Boosting Classifier
tuned_gb_model = GradientBoostingClassifier(
n_estimators=best_params_gb_simplified['n_estimators'],
learning_rate=best_params_gb_simplified['learning_rate'],
max_depth=best_params_gb_simplified['max_depth'],
random_state=42

)
tuned_gb_model.fit(X_train_scaled, y_train)
y_pred_tuned_gb = tuned_gb_model.predict(X_test_scaled)

Performance metrics for the tuned Gradient Boosting Classifier
accuracy_tuned_gb = accuracy_score(y_test, y_pred_tuned_gb)
precision_tuned_gb = precision_score(y_test, y_pred_tuned_gb)
recall_tuned_gb = recall_score(y_test, y_pred_tuned_gb)
roc_auc_tuned_gb = roc_auc_score(y_test, y_pred_tuned_gb)

tuned_gb_metrics = {
"Accuracy": accuracy_tuned_gb,
"Precision": precision_tuned_gb,
"Recall": recall_tuned_gb,
"ROC AUC": roc_auc_tuned_gb

}

tuned_gb_metrics

{'Accuracy': 0.7,

'Precision': 0.56,

'Recall': 0.5833333333333334,

'ROC AUC': 0.6721014492753624}

Creating and evaluating the tuned Random Forest model
tuned_rf_model = RandomForestClassifier(
n_estimators=best_params_rf_simplified['n_estimators'],
max_depth=best_params_rf_simplified['max_depth'],
min_samples_split=best_params_rf_simplified['min_samples_split'],
random_state=42

)
tuned_rf_model.fit(X_train_scaled, y_train)
y_pred_tuned_rf = tuned_rf_model.predict(X_test_scaled)

Performance metrics for the tuned Random Forest
accuracy_tuned_rf = accuracy_score(y_test, y_pred_tuned_rf)
precision_tuned_rf = precision_score(y_test, y_pred_tuned_rf)
recall_tuned_rf = recall_score(y_test, y_pred_tuned_rf)
roc_auc_tuned_rf = roc_auc_score(y_test, y_pred_tuned_rf)

tuned_rf_metrics = {
"Accuracy": accuracy_tuned_rf,
"Precision": precision_tuned_rf,
"Recall": recall_tuned_rf,
"ROC AUC": roc_auc_tuned_rf

}

tuned_rf_metrics

{'Accuracy': 0.7142857142857143,

'Precision': 0.6111111111111112,

'Recall': 0.4583333333333333,

'ROC AUC': 0.6530797101449275}

import pickle
pickle.dump(tuned_rf_model, open('model.pkl', 'wb'))

2. app.py
from flask import Flask, request, render_template

import pickle

app = Flask(__name__)

Load the model

model = pickle.load(open("model.pkl","rb"))

@app.route('/', methods=['GET', 'POST'])

def predict():

prediction = ''

if request.method == 'POST':

Extract features from the form

feature1 = request.form.get('Age', type=float)

feature2 = request.form.get('Urinalysis', type=float)

feature3 = request.form.get('Pcv', type=float)

feature4 = request.form.get('Gestational_Age', type=float)

feature5 = request.form.get('Blood_GroupBG', type=float)

feature6 = request.form.get('HCV', type=float)

feature7 = request.form.get('RVS', type=float)

feature8 = request.form.get('PRbm', type=float)

feature9 = request.form.get('History_of_emclapsia_in_family', type=float)

feature10 = request.form.get('HBSAG', type=float)

feature11 = request.form.get('systolic_bp', type=float)

feature12 = request.form.get('diastolic_bp', type=float)

Make prediction

prediction = model.predict([[feature1, feature2, feature3, feature4, feature5, feature6, feature7,

feature8, feature9, feature10, feature11, feature12]])[0]

if prediction == 0:

prediction = f'Preeclampsia not detected {prediction}'

else: prediction = f'Preeclampsia not detected {prediction}'

return render_template('index.html', prediction=prediction)

if __name__ == '__main__':

app.run(debug=True)

3. Index.html
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Preeclampsia Prediction Form</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f0f0f0;

display: flex;

justify-content: center;

align-items: center;

/*height: 100vh;*/

margin: 0;

}

.form-container {

background-color: #ffffff;

padding: 20px;

border-radius: 8px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

width: 100%;

max-width: 500px; /* Adjust this value as needed */

}

h2 {

color: #333;

text-align: center;

}

input[type="text"], input[type="submit"] {

width: calc(60% - 20px); /* Adjust width to account for padding */

padding: 10px;

margin: 8px 0;

border: 1px solid #ccc;

border-radius: 4px;

}

input[type="submit"] {

background-color: #4CAF50;

color: white;

cursor: pointer;

border: none;

}

input[type="submit"]:hover {

background-color: #45a049;

}

label {

font-weight: bold;

display: block;

margin-top: 10px;

}

</style>

</head>

<body>

<div class="form-container">

<h2>Preeclampsia Prediction Form</h2>

<form method="post" action="/">

<!-- <label for="Age">Age:</label>-->

Age: <input type="text" id="Age" name="Age" required>

Urinalysis: <input type="text" id="Urinalysis" name="Urinalysis" required>

Pcv:<input type="text" id="Pcv" name="Pcv" required>

Gestational Age: <input type="text" id="Gestational_Age" name="Gestational_Age" required>

Blood Group: <input type="text" id="Blood_GroupBG" name="Blood_GroupBG" required>

HCV: <input type="text" id="HCV" name="HCV" required>

RVS: <input type="text" id="RVS" name="RVS" required>

PRBm <input type="text" id="PRbm" name="PRbm" required>

History of eclampsia:<input type="text" id="History_of_emclapsia_in_family"

name="History_of_emclapsia_in_family" required>

HBSAG:<input type="text" id="HBSAG" name="HBSAG" required>

Systolic BP: <input type="text" id="systolic_bp" name="systolic_bp" required>

Diastolic BP:<input type="text" id="diastolic_bp" name="diastolic_bp" required>

<input type="submit" value="Predict">

</form>

</div>

{{ prediction }}

</body>

</html>

